9,166 research outputs found
The Heat Kernel on
We explicitly evaluate the heat kernel for the Laplacian of arbitrary spin
tensor fields on the thermal quotient of (Euclidean) for
using the group theoretic techniques employed for in arXiv:0911.5085.
Our approach is general and can be used, in principle, for other quotients as
well as other symmetric spaces.Comment: Added references, added appendix on heat kernel in even dimensio
Renal impairment in a rural African antiretroviral programme
Background:
There is little knowledge regarding the prevalence and nature of renal impairment in African populations initiating antiretroviral treatment, nor evidence to inform the most cost effective methods of screening for renal impairment. With the increasing availability of the potentially nephrotixic drug, tenofovir, such information is important for the planning of antiretroviral programmes
Methods:
(i) Retrospective review of the prevalence and risk factors for impaired renal function in 2189 individuals initiating antiretroviral treatment in a rural African setting between 2004 and 2007 (ii) A prospective study of 149 consecutive patients initiating antiretrovirals to assess the utility of urine analysis for the detection of impaired renal function. Severe renal and moderately impaired renal function were defined as an estimated GFR of ≤ 30 mls/min/1.73 m2 and 30–60 mls/min/1.73 m2 respectively. Logistic regression was used to determine odds ratio (OR) of significantly impaired renal function (combining severe and moderate impairment). Co-variates for analysis were age, sex and CD4 count at initiation.
Results:
(i) There was a low prevalence of severe renal impairment (29/2189, 1.3% 95% C.I. 0.8–1.8) whereas moderate renal impairment was more frequent (287/2189, 13.1% 95% C.I. 11.6–14.5) with many patients having advanced immunosuppression at treatment initiation (median CD4 120 cells/μl). In multivariable logistic regression age over 40 (aOR 4.65, 95% C.I. 3.54–6.1), male gender (aOR 1.89, 95% C.I. 1.39–2.56) and CD4<100 cells/ul (aOR 1.4, 95% C.I. 1.07–1.82) were associated with risk of significant renal impairment (ii) In 149 consecutive patients, urine analysis had poor sensitivity and specificity for detecting impaired renal function.
Conclusion:
In this rural African setting, significant renal impairment is uncommon in patients initiating antiretrovirals. Urine analysis alone may be inadequate for identification of those with impaired renal function where resources for biochemistry are limited
Online unit clustering in higher dimensions
We revisit the online Unit Clustering and Unit Covering problems in higher
dimensions: Given a set of points in a metric space, that arrive one by
one, Unit Clustering asks to partition the points into the minimum number of
clusters (subsets) of diameter at most one; while Unit Covering asks to cover
all points by the minimum number of balls of unit radius. In this paper, we
work in using the norm.
We show that the competitive ratio of any online algorithm (deterministic or
randomized) for Unit Clustering must depend on the dimension . We also give
a randomized online algorithm with competitive ratio for Unit
Clustering}of integer points (i.e., points in , , under norm). We show that the competitive ratio of
any deterministic online algorithm for Unit Covering is at least . This
ratio is the best possible, as it can be attained by a simple deterministic
algorithm that assigns points to a predefined set of unit cubes. We complement
these results with some additional lower bounds for related problems in higher
dimensions.Comment: 15 pages, 4 figures. A preliminary version appeared in the
Proceedings of the 15th Workshop on Approximation and Online Algorithms (WAOA
2017
Wireless Power Transmission
Wireless Power Transmission through inductive coupling is one of the new emerging technologies that will bring tremendous change in human life. Due to shortage of time and fast running life style it is difficult to carry the complete charging set which increases the demand of the wirelessly charged products. Wireless power transfer is one of the simplest and inexpensive ways of charging as it eliminate the use of conventional copper cables and current carrying wires. In this paper, a technique is devised for a wireless power transfer through induction, and a feasible design is modeled accordingly. The technique used in this paper is the inductive coupling as it the easiest method of high efficiency power transfer without using wired medium (eg, transformer). In this paper the result of experiment is given which is done to check wireless working of a simple application by glowing LED, and charging a mobile. Wireless power transfer is not much affected by placing hurdles likes books, hands and plastic between transceiver and receiver. This research work focuses on the study of wireless power transfer for the purpose of transferring cut and dried amount of energy at maximum efficiency
Removal of hexavalent chromium of contaminated soil by coupling electrokinetic remediation and permeable reactive biobarriers
PURPOSE:
In this study, a novel and ecological alternative have been developed to treat soils contaminated with hexavalent chromium coupling two well-known systems: electrokinetic remediation and permeable reactive biobarriers. The electric field promotes the electromigration of the hexavalent chromium oxyanions towards the anode. The biobarriers were placed before the anode electrode, in order to promote the reduction and retention of the chromium migrating in its direction. Thus, this technology provided a global treatment to soil removal without subsequent treatments of the contaminated effluents.
METHODS:
The electrokinetic system was coupled with two different permeable reactive biobarriers composed by Arthrobacter viscosus bacteria, supported either in activated carbon or zeolite. An electric field of 10 V was applied and two different treatment times of 9 and 18 days were tested.
RESULTS:
Removal values of 60% and 79% were obtained when electrokinetic treatment was coupled with zeolite and activated carbon biobarriers, respectively, for a test period of 18 day. The reduction of hexavalent chromium to trivalent chromium was around 45% for both systems.
CONCLUSIONS:
In this work, two types of biobarriers were efficiently coupled to electrokinetic treatment to decontaminate soil with Cr(VI). Furthermore, the viability of the new coupling technology developed (electrokinetic + biobarriers) to treat low-permeability polluted soils was demonstrated.This work was supported by the Spanish Ministry of Science and Innovation (CTQ2008-03059/PPQ), Xunta de Galicia (08MDS034314PR). The authors are grateful to the Spanish Ministry of Science and Innovation for providing financial support for Marta Pazos under the Ramon y Cajal program and the Fundacao para a Ciencia e Tecnologia, Ministerio da Ciencia e Tecnologia, Portugal through the PhD grant of Bruna Fonseca (SFRH/BD/27780/2006)
Transmit Power Minimization for MIMO Systems of Exponential Average BER with Fixed Outage Probability
This document is the Accepted Manuscript version of the following article: Dian-Wu Yue, and Yichuang Sun, ‘Transmit Power Minimization for MIMO Systems of Exponential Average BER with Fixed Outage Probability’, Wireless Personal Communications, Vol. 90 (4): 1951-1970, first available online on 20 June 2016. Under embargo. Embargo end date: 20 June 2017. The final publication is available at Springer via https://link.springer.com/article/10.1007%2Fs11277-016-3432-4This paper is concerned with a wireless multiple-antenna system operating in multiple-input multiple-output (MIMO) fading channels with channel state information being known at both transmitter and receiver. By spatiotemporal subchannel selection and power control, it aims to minimize the average transmit power (ATP) of the MIMO system while achieving an exponential type of average bit error rate (BER) for each data stream. Under the constraints on each subchannel that individual outage probability and average BER are given, based on a traditional upper bound and a dynamic upper bound of Q function, two closed-form ATP expressions are derived, respectively, which can result in two different power allocation schemes. Numerical results are provided to validate the theoretical analysis, and show that the power allocation scheme with the dynamic upper bound can achieve more power savings than the one with the traditional upper bound.Peer reviewe
Visibility Representations of Boxes in 2.5 Dimensions
We initiate the study of 2.5D box visibility representations (2.5D-BR) where
vertices are mapped to 3D boxes having the bottom face in the plane and
edges are unobstructed lines of sight parallel to the - or -axis. We
prove that: Every complete bipartite graph admits a 2.5D-BR; The
complete graph admits a 2.5D-BR if and only if ; Every
graph with pathwidth at most admits a 2.5D-BR, which can be computed in
linear time. We then turn our attention to 2.5D grid box representations
(2.5D-GBR) which are 2.5D-BRs such that the bottom face of every box is a unit
square at integer coordinates. We show that an -vertex graph that admits a
2.5D-GBR has at most edges and this bound is tight. Finally,
we prove that deciding whether a given graph admits a 2.5D-GBR with a given
footprint is NP-complete. The footprint of a 2.5D-BR is the set of
bottom faces of the boxes in .Comment: Appears in the Proceedings of the 24th International Symposium on
Graph Drawing and Network Visualization (GD 2016
Recommended from our members
A mobile assisted coverage hole patching scheme based on particle swarm optimization for WSNs
Wireless sensor networks (WSNs) have drawn much research attention in recent years due to the superior performance in multiple applications, such as military and industrial monitoring, smart home, disaster restoration etc. In such applications, massive sensor nodes are randomly deployed and they remain static after the deployment, to fully cover the target sensing area. This will usually cause coverage redundancy or coverage hole problem. In order to effectively deploy sensors to cover whole area, we present a novel node deployment algorithm based on mobile sensors. First, sensor nodes are randomly deployed in target area, and they remain static or switch to the sleep mode after deployment. Second, we partition the network into grids and calculate the coverage rate of each grid. We select grids with lower coverage rate as candidate grids. Finally, we awake mobile sensors from sleep mode to fix coverage hole, particle swarm optimization (PSO) algorithm is used to calculate moving position of mobile sensors. Simulation results show that our algorithm can effectively improve the coverage rate of WSNs
Study of Network Traffic Analysis and Prediction
Network traffic analysis is the way toward chronicle, evaluating and examining system traffic with the end goal of execution, security as well as general system tasks and the executives. Analysis and prediction of network traffic has applications in wide far reaching set of zones and has recently pulled in noteworthy number of studies. Various types of trials are directed and condensed to distinguish different issues in existing PC arrange applications. System traffic examination and forecast is a proactive way to deal with guarantee secure, dependable and subjective system correspondence. Different systems are proposed and tested for analyzing system traffic including neural network based strategies to data mining methods. So also, different Linear and non-linear models are proposed for system traffic prediction. A few intriguing mixes of system examination and forecast strategies are actualized to achieve proficient and compelling outcomes [3]
Laser treatment in diabetic retinopathy
Diabetic retinopathy is a leading cause of visual impairment and blindness in developed countries due to macular edema and proliferative diabetic retinopathy (PDR). For both complications laser treatment may offer proven therapy: the Diabetic Retinopathy Study demonstrated that panretinal scatter photocoagulation reduces the risk of severe visual loss by >= 50% in eyes with high-risk characteristics. Pan-retinal scatter coagulation may also be beneficial in other PDR and severe nonproliferative diabetic retinopathy (NPDR) under certain conditions. For clinically significant macular edema the Early Treatment of Diabetic Retinopathy Study could show that immediate focal laser photocoagulation reduces the risk of moderate visual loss by at least 50%. When and how to perform laser treatment is described in detail, offering a proven treatment for many problems associated with diabetic retinopathy based on a high evidence level. Copyright (c) 2007 S. Karger AG, Basel
- …
