362 research outputs found

    Mr. and Mrs. Paul Hendrickson to Sir (2 October 1962)

    Get PDF
    https://egrove.olemiss.edu/mercorr_pro/1549/thumbnail.jp

    Surveillance programs for detection and characterization of emergent pathogens and antimicrobial resistance: results from the Division of Infectious Diseases, UNIFESP

    Get PDF
    Several epidemiological changes have occurred in the pattern of nosocomial and community acquired infectious diseases during the past 25 years. Social and demographic changes possibly related to this phenomenon include a rapid population growth, the increase in urban migration and movement across international borders by tourists and immigrants, alterations in the habitats of animals and arthropods that transmit disease, as well as the raise of patients with impaired host defense abilities. Continuous surveillance programs of emergent pathogens and antimicrobial resistance are warranted for detecting in real time new pathogens, as well as to characterize molecular mechanisms of resistance. In order to become more effective, surveillance programs of emergent pathogens should be organized as a multicenter laboratory network connected to the main public and private infection control centers. Microbiological data should be integrated to guide therapy, adapting therapy to local ecology and resistance patterns. This paper presents an overview of data generated by the Division of Infectious Diseases, Federal University of São Paulo, along with its participation in different surveillance programs of nosocomial and community acquired infectious diseases.Várias alterações epidemiológicas ocorreram no perfil das doenças infecciosas hospitalares e comunitárias nos últimos 25 anos. Mudanças sociais e demográficas possivelmente relacionadas com esse fenômeno incluem o rápido crescimento populacional, o aumento da migração urbana e deslocamento através de fronteiras internacionais por turistas e imigrantes, alterações nos habitats de animais e artrópodes que transmitem doença assim como o aumento no número de pacientes com deficiências nas respostas de defesa. Os programas contínuos de vigilância de patógenos emergentes e resistência antimicrobiana são necessários para a detecção em tempo real de novos patógenos assim como para caracterizar mecanismos moleculares de resistência. Para serem mais efetivos, os programasde vigilância dos patógenos emergentes devem ser organizados em uma rede de laboratórios multicêntricos ligados aos principais centros de controle de infecções, públicos e privados. Os dados microbiológicos devem ser integrados a guias terapêuticos adaptando práticas terapêuticas à ecologia local eaos padrões de resistência. O artigo apresenta uma revisão dos dados gerados pela Disciplina de Infectologia, Universidade Federal de São Paulo (UNIFESP), contemplando sua participação nos diferentes programas de vigilância de doenças infecciosas hospitalares e adquiridas na comunidade.Universidade Federal de São Paulo (UNIFESP) Departamento de Medicina Divisão de Doenças InfecciosasUniversidade Federal de São Paulo (UNIFESP) Departamento de Microbiologia, Imunologia e ParasitologiaUNIFESP, Depto. de Medicina Divisão de Doenças InfecciosasUNIFESP, Depto. de Microbiologia, Imunologia e ParasitologiaSciEL

    Novel Fusion of MYST/Esa1-Associated Factor 6 and PHF1 in Endometrial Stromal Sarcoma

    Get PDF
    Rearrangement of chromosome band 6p21 is recurrent in endometrial stromal sarcoma (ESS) and targets the PHF1 gene. So far, PHF1 was found to be the 3′ partner in the JAZF1-PHF1 and EPC1-PHF1 chimeras but since the 6p21 rearrangements involve also other chromosomal translocation partners, other PHF1-fusions seem likely. Here, we show that PHF1 is recombined with a novel fusion partner, MEAF6 from 1p34, in an ESS carrying a t(1;6)(p34;p21) translocation as the sole karyotypic anomaly. 5′-RACE, RT-PCR, and sequencing showed the presence of an MEAF6-PHF1 chimera in the tumor with exon 5 of MEAF6 being fused in-frame to exon 2 of PHF1 so that the entire PHF1 coding region becomes the 3′ terminal part of the MEAF6-PHF1 fusion. The predicted fusion protein is composed of 750 amino acids and contains the histone acetyltransferase subunit NuA4 domain of MEAF6 and the tudor, PHD zinc finger, and MTF2 domains of PHF1. Although the specific functions of the MEAF6 and PHF1 proteins and why they are targeted by a neoplasia-specific gene fusion are not directly apparent, it seems that rearrangement of genes involved in acetylation (EPC1, MEAF6) and methylation (PHF1), resulting in aberrant gene expression, is a common theme in ESS pathogenesis

    Get Phases from Arsenic Anomalous Scattering: de novo SAD Phasing of Two Protein Structures Crystallized in Cacodylate Buffer

    Get PDF
    The crystal structures of two proteins, a putative pyrazinamidase/nicotinamidase from the dental pathogen Streptococcus mutans (SmPncA) and the human caspase-6 (Casp6), were solved by de novo arsenic single-wavelength anomalous diffraction (As-SAD) phasing method. Arsenic (As), an uncommonly used element in SAD phasing, was covalently introduced into proteins by cacodylic acid, the buffering agent in the crystallization reservoirs. In SmPncA, the only cysteine was bound to dimethylarsinoyl, which is a pentavalent arsenic group (As (V)). This arsenic atom and a protein-bound zinc atom both generated anomalous signals. The predominant contribution, however, was from the As anomalous signals, which were sufficient to phase the SmPncA structure alone. In Casp6, four cysteines were found to bind cacodyl, a trivalent arsenic group (As (III)), in the presence of the reducing agent, dithiothreitol (DTT), and arsenic atoms were the only anomalous scatterers for SAD phasing. Analyses and discussion of these two As-SAD phasing examples and comparison of As with other traditional heavy atoms that generate anomalous signals, together with a few arsenic-based de novo phasing cases reported previously strongly suggest that As is an ideal anomalous scatterer for SAD phasing in protein crystallography

    Ku Regulates the Non-Homologous End Joining Pathway Choice of DNA Double-Strand Break Repair in Human Somatic Cells

    Get PDF
    The repair of DNA double-strand breaks (DSBs) is critical for the maintenance of genomic integrity and viability for all organisms. Mammals have evolved at least two genetically discrete ways to mediate DNA DSB repair: homologous recombination (HR) and non-homologous end joining (NHEJ). In mammalian cells, most DSBs are preferentially repaired by NHEJ. Recent work has demonstrated that NHEJ consists of at least two sub-pathways—the main Ku heterodimer-dependent or “classic” NHEJ (C-NHEJ) pathway and an “alternative” NHEJ (A-NHEJ) pathway, which usually generates microhomology-mediated signatures at repair junctions. In our study, recombinant adeno-associated virus knockout vectors were utilized to construct a series of isogenic human somatic cell lines deficient in the core C-NHEJ factors (Ku, DNA-PKcs, XLF, and LIGIV), and the resulting cell lines were characterized for their ability to carry out DNA DSB repair. The absence of DNA-PKcs, XLF, or LIGIV resulted in cell lines that were profoundly impaired in DNA DSB repair activity. Unexpectedly, Ku86-null cells showed wild-type levels of DNA DSB repair activity that was dominated by microhomology joining events indicative of A-NHEJ. Importantly, A-NHEJ DNA DSB repair activity could also be efficiently de-repressed in LIGIV-null and DNA-PKcs-null cells by subsequently reducing the level of Ku70. These studies demonstrate that in human cells C-NHEJ is the major DNA DSB repair pathway and they show that Ku is the critical C-NHEJ factor that regulates DNA NHEJ DSB pathway choice

    Topoisomerase II-Mediated DNA Damage Is Differently Repaired during the Cell Cycle by Non-Homologous End Joining and Homologous Recombination

    Get PDF
    Topoisomerase II (Top2) is a nuclear enzyme involved in several metabolic processes of DNA. Chemotherapy agents that poison Top2 are known to induce persistent protein-mediated DNA double strand breaks (DSB). In this report, by using knock down experiments, we demonstrated that Top2α was largely responsible for the induction of γH2AX and cytotoxicity by the Top2 poisons idarubicin and etoposide in normal human cells. As DSB resulting from Top2 poisons-mediated damage may be repaired by non-homologous end joining (NHEJ) or homologous recombination (HR), we aimed to analyze both DNA repair pathways. We found that DNA-PKcs was rapidly activated in human cells, as evidenced by autophosphorylation at serine 2056, following Top2-mediated DNA damage. The chemical inhibition of DNA-PKcs by wortmannin and vanillin resulted in an increased accumulation of DNA DSB, as evaluated by the comet assay. This was supported by a hypersensitive phenotype to Top2 poisons of Ku80- and DNA-PKcs- defective Chinese hamster cell lines. We also showed that Rad51 protein levels, Rad51 foci formation and sister chromatid exchanges were increased in human cells following Top2-mediated DNA damage. In support, BRCA2- and Rad51C- defective Chinese hamster cells displayed hypersensitivity to Top2 poisons. The analysis by immunofluorescence of the DNA DSB repair response in synchronized human cell cultures revealed activation of DNA-PKcs throughout the cell cycle and Rad51 foci formation in S and late S/G2 cells. Additionally, we found an increase of DNA-PKcs-mediated residual repair events, but not Rad51 residual foci, into micronucleated and apoptotic cells. Therefore, we conclude that in human cells both NHEJ and HR are required, with cell cycle stage specificity, for the repair of Top2-mediated reversible DNA damage. Moreover, NHEJ-mediated residual repair events are more frequently associated to irreversibly damaged cells

    Ago2 Immunoprecipitation Identifies Predicted MicroRNAs in Human Embryonic Stem Cells and Neural Precursors

    Get PDF
    MicroRNAs are required for maintenance of pluripotency as well as differentiation, but since more microRNAs have been computationally predicted in genome than have been found, there are likely to be undiscovered microRNAs expressed early in stem cell differentiation.SOLiD ultra-deep sequencing identified >10(7) unique small RNAs from human embryonic stem cells (hESC) and neural-restricted precursors that were fit to a model of microRNA biogenesis to computationally predict 818 new microRNA genes. These predicted genomic loci are associated with chromatin patterns of modified histones that are predictive of regulated gene expression. 146 of the predicted microRNAs were enriched in Ago2-containing complexes along with 609 known microRNAs, demonstrating association with a functional RISC complex. This Ago2 IP-selected subset was consistently expressed in four independent hESC lines and exhibited complex patterns of regulation over development similar to previously-known microRNAs, including pluripotency-specific expression in both hESC and iPS cells. More than 30% of the Ago2 IP-enriched predicted microRNAs are new members of existing families since they share seed sequences with known microRNAs.Extending the classic definition of microRNAs, this large number of new microRNA genes, the majority of which are less conserved than their canonical counterparts, likely represent evolutionarily recent regulators of early differentiation. The enrichment in Ago2 containing complexes, the presence of chromatin marks indicative of regulated gene expression, and differential expression over development all support the identification of 146 new microRNAs active during early hESC differentiation
    corecore