82 research outputs found
Turbulent thermal diffusion in a multi-fan turbulence generator with the imposed mean temperature gradient
We studied experimentally the effect of turbulent thermal diffusion in a
multi-fan turbulence generator which produces a nearly homogeneous and
isotropic flow with a small mean velocity. Using Particle Image Velocimetry and
Image Processing techniques we showed that in a turbulent flow with an imposed
mean vertical temperature gradient (stably stratified flow) particles
accumulate in the regions with the mean temperature minimum. These experiments
detected the effect of turbulent thermal diffusion in a multi-fan turbulence
generator for relatively high Reynolds numbers. The experimental results are in
compliance with the results of the previous experimental studies of turbulent
thermal diffusion in oscillating grids turbulence (Buchholz et al. 2004;
Eidelman et al. 2004). We demonstrated that turbulent thermal diffusion is an
universal phenomenon. It occurs independently of the method of turbulence
generation, and the qualitative behavior of particle spatial distribution in
these very different turbulent flows is similar. Competition between turbulent
fluxes caused by turbulent thermal diffusion and turbulent diffusion determines
the formation of particle inhomogeneities.Comment: 9 pages, 9 figure, REVTEX4, Experiments in Fluids, in pres
Orientation cues for high-flying nocturnal insect migrants: do turbulence-induced temperature and velocity fluctuations indicate the mean wind flow?
Migratory insects flying at high altitude at night often show a degree of common alignment, sometimes with quite small angular dispersions around the mean. The observed orientation directions are often close to the downwind direction and this would seemingly be adaptive in that large insects could add their self-propelled speed to the wind speed, thus maximising their displacement in a given time. There are increasing indications that high-altitude orientation may be maintained by some intrinsic property of the wind rather than by visual perception of relative ground movement. Therefore, we first examined whether migrating insects could deduce the mean wind direction from the turbulent fluctuations in temperature. Within the atmospheric boundary-layer, temperature records show characteristic ramp-cliff structures, and insects flying downwind would move through these ramps whilst those flying crosswind would not. However, analysis of vertical-looking radar data on the common orientations of nocturnally migrating insects in the UK produced no evidence that the migrants actually use temperature ramps as orientation cues. This suggests that insects rely on turbulent velocity
and acceleration cues, and refocuses attention on how these can be detected, especially as small-scale turbulence is usually held to be directionally invariant (isotropic). In the second part of the paper we present a theoretical analysis and simulations showing that velocity fluctuations and accelerations felt by an insect are predicted to be anisotropic even when the small-scale turbulence (measured at a fixed point or along the trajectory of a fluid-particle) is isotropic. Our results thus provide further evidence that insects do indeed use turbulent velocity and acceleration cues as indicators of the mean wind direction
Inertio-elastic focusing of bioparticles in microchannels at high throughput
Controlled manipulation of particles from very large volumes of fluid at high throughput is critical for many biomedical, environmental and industrial applications. One promising approach is to use microfluidic technologies that rely on fluid inertia or elasticity to drive lateral migration of particles to stable equilibrium positions in a microchannel. Here, we report on a hydrodynamic approach that enables deterministic focusing of beads, mammalian cells and anisotropic hydrogel particles in a microchannel at extremely high flow rates. We show that on addition of micromolar concentrations of hyaluronic acid, the resulting fluid viscoelasticity can be used to control the focal position of particles at Reynolds numbers up to Re≈10,000 with corresponding flow rates and particle velocities up to 50 ml min[superscript −1] and 130 m s[superscript −1]. This study explores a previously unattained regime of inertio-elastic fluid flow and demonstrates bioparticle focusing at flow rates that are the highest yet achieved.National Institute for Biomedical Imaging and Bioengineering (U.S.) (P41 BioMicroElectroMechanical Systems Resource Center)National Institute for Biomedical Imaging and Bioengineering (U.S.) (P41 EB002503)National Science Foundation (U.S.). Graduate Research FellowshipUnited States. Army Research Office (Institute for Collaborative Biotechnologies Grant W911NF-09-0001
Lattice Boltzmann simulations of soft matter systems
This article concerns numerical simulations of the dynamics of particles
immersed in a continuum solvent. As prototypical systems, we consider colloidal
dispersions of spherical particles and solutions of uncharged polymers. After a
brief explanation of the concept of hydrodynamic interactions, we give a
general overview over the various simulation methods that have been developed
to cope with the resulting computational problems. We then focus on the
approach we have developed, which couples a system of particles to a lattice
Boltzmann model representing the solvent degrees of freedom. The standard D3Q19
lattice Boltzmann model is derived and explained in depth, followed by a
detailed discussion of complementary methods for the coupling of solvent and
solute. Colloidal dispersions are best described in terms of extended particles
with appropriate boundary conditions at the surfaces, while particles with
internal degrees of freedom are easier to simulate as an arrangement of mass
points with frictional coupling to the solvent. In both cases, particular care
has been taken to simulate thermal fluctuations in a consistent way. The
usefulness of this methodology is illustrated by studies from our own research,
where the dynamics of colloidal and polymeric systems has been investigated in
both equilibrium and nonequilibrium situations.Comment: Review article, submitted to Advances in Polymer Science. 16 figures,
76 page
Twisting of light around rotating black holes
Kerr black holes are among the most intriguing predictions of Einstein's
general relativity theory. These rotating massive astrophysical objects drag
and intermix their surrounding space and time, deflecting and phase-modifying
light emitted nearby them. We have found that this leads to a new relativistic
effect that imposes orbital angular momentum onto such light. Numerical
experiments, based on the integration of the null geodesic equations of light
from orbiting point-like sources in the Kerr black hole equatorial plane to an
asymptotic observer, indeed identify the phase change and wavefront warping and
predict the associated light-beam orbital angular momentum spectra. Setting up
the best existing telescopes properly, it should be possible to detect and
measure this twisted light, thus allowing a direct observational demonstration
of the existence of rotating black holes. Since non-rotating objects are more
an exception than a rule in the Universe, our findings are of fundamental
importance.Comment: Article: 18 pages (11 pages in form of an Appendix). Total number of
figures:
Improved lag screw positioning in the treatment of proximal femur fractures using a novel computer assisted surgery method: a cadaveric study
Turbulence drives microscale patches of motile phytoplankton
Patchiness plays a fundamental role in phytoplankton ecology by dictating the rate at which individual cells encounter each other and their predators. The distribution of motile phytoplankton species is often considerably more patchy than that of non-motile species at submetre length scales, yet the mechanism generating this patchiness has remained unknown. Here we show that strong patchiness at small scales occurs when motile phytoplankton are exposed to turbulent flow. We demonstrate experimentally that Heterosigma akashiwo forms striking patches within individual vortices and prove with a mathematical model that this patchiness results from the coupling between motility and shear. When implemented within a direct numerical simulation of turbulence, the model reveals that cell motility can prevail over turbulent dispersion to create strong fractal patchiness, where local phytoplankton concentrations are increased more than 10-fold. This "unmixing" mechanism likely enhances ecological interactions in the plankton and offers mechanistic insights into how turbulence intensity impacts ecosystem productivity
Fixed-Dose Combination of Tafluprost and Timolol in the Treatment of Open-Angle Glaucoma and Ocular Hypertension: Comparison with Other Fixed-Combination Products
Reseñas 33/2 (2000)
To analyze the dynamics of small, spherical, rigid bubbles in a certain class of turbulent shear flows dominated by large scale coherent vortical structures, we model the plane free shear layer with a periodic array of Stuart vortices. The equation of motion of the bubbles is then integrated numerically to obtain the Lagrangian description of the bubbles, the long-term dynamics of which depends on the free-stream Reynolds number, the Stokes number, the gravitational field, and the strength of the vortices. Depending on the values of these four parameters, it is found that either there exists a stable equilibrium point near the center of each vortex, where bubble accumulation occurs, or all bubbles escape from captivity by the vortices. In the limiting case of dominant viscous drag
forces, an Eulerian description of the "bubble flow field" is derived. Furthermore, the divergence of this flow field is negative in the neighborhood of a vortex center, where it achieves its minimum. This indicates that bubbles accumulation may indeed exist, and thus qualitatively confirms the more general numerical results obtained without the assumption of dominant viscous drag forces
Aggregation of Fibers by Waves
International audienceSea balls also called aegagropila, can be found on Mediterranean beaches. They are made of Posidonia fibers, which aggregate on the seabed due to the sea motions. To understand the mechanism of aggregation and compaction of these structures , we have performed a laboratory investigation on the dynamics of aggregation of fibers by surface gravity waves generated in a water tank. Amazingly, depending on the flexibility of the fibers, two different sites of aggregation are observed. Following our experiments, we propose an analytical derivation of the clustering of particles by the Stokes drift. This theoretical calculation is quite general and emphasizes the respective roles of the Stokes number and the density of the particles; it also underlines the importance of the fiber flexibility in their drift and explains our experimental observations
- …
