12 research outputs found

    Compatibility between Calpurnia aurea leaf extract, attraction aggregation, and attachment pheromone and entomopathogenic fungus Metarhizium anisopliae on viability, growth, and virulence of the pathogen

    No full text
    Metarhizium anisopliae sensu stricto (ss) (Metsch.) Sorok. isolate ICIPE 07 is being developed as biopesticide for the control of ticks. In addition, leaf extracts of Calpurnia aurea Benth, and the attraction aggregation and attachment pheromone (AAAP) are being used as ticks’ attractant. The three agents are being considered for use in combination in an autodissemination approach, whereby ticks that are attracted to semiochemicals are infected with the inoculum. Experiments were therefore conducted to evaluate in vitro the compatibility between C. aurea, AAAP, and the M. anisopliae on vegetative growth, conidial production, and spore viability. Calpurnia aurea leaf extract was compatible with the fungus at all the concentrations tested, whereas AAAP inhibited all the fungal growth parameters. The virulence of M. anisopliae formulated in emulsifiable extracts of C. aurea was also tested against different developmental stages of Rhipicephalus appendiculatus in laboratory bioassays. No significant differences in virulence were observed between M. anisopliae applied alone and M. anisopliae formulated in different concentrations of C. aurea leaf extracts. These results suggest that C. aurea leaf extracts is compatible with M. anisopliae and could be mixed together for “spot-spray” treatments as low-cost and environmental-friendly technology to control ticks in grazing field, while AAAP should be used separately.Bioscience Eastern and Central Africa Network (BecANet) and the Canadian International Development Agency (CIDA).http://link.springer.com/journal/10340hb2013mn201

    Yield potential definition of the chilling requirement reveals likely underestimation of the risk of climate change on winter chill accumulation.

    No full text
    -90%. Regional suitability across the landscape was highly dependent on the method used to define chilling requirements, and differences were found for both cold and mild winter areas. Our results suggest that bud break percentage levels used in the assessment of chilling requirements for sweet cherry influence production risks of current and future production areas. The use of traditional methods to determine chilling requirements can result in an underestimation of productivity chilling requirements for tree crops like sweet cherry which rely on a high conversion of flowers to mature fruit to obtain profitable yields. This underestimation may have negative consequences for the fruit industry as climate change advances with climate risk underestimated

    Interactions among Organelles Involved in Photorespiration

    No full text
    corecore