1,972 research outputs found
Spin and Chirality Effects in Antler-Topology Processes at High Energy Colliders
We perform a model-independent investigation of spin and chirality
correlation effects in the antler-topology processes
at high energy colliders with polarized
beams. Generally the production process
can occur not only through the -channel exchange of vector bosons,
, including the neutral Standard Model (SM) gauge bosons,
and , but also through the - and -channel exchanges of new
neutral states, and , and the -channel
exchange of new doubly-charged states, . The general set of
(non-chiral) three-point couplings of the new particles and leptons allowed in
a renormalizable quantum field theory is considered. The general spin and
chirality analysis is based on the threshold behavior of the excitation curves
for pair production in collisions with
longitudinal and transverse polarized beams, the angular distributions in the
production process and also the production-decay angular correlations. In the
first step, we present the observables in the helicity formalism. Subsequently,
we show how a set of observables can be designed for determining the spins and
chiral structures of the new particles without any model assumptions. Finally,
taking into account a typical set of approximately chiral invariant scenarios,
we demonstrate how the spin and chirality effects can be probed experimentally
at a high energy collider.Comment: 50 pages, 14 figures, 6 tables, matches version published in EPJ
Mutation Symmetries in BPS Quiver Theories: Building the BPS Spectra
We study the basic features of BPS quiver mutations in 4D
supersymmetric quantum field theory with gauge symmetries.\ We show,
for these gauge symmetries, that there is an isotropy group
associated to a set of quiver mutations capturing
information about the BPS spectra. In the strong coupling limit, it is shown
that BPS chambers correspond to finite and closed groupoid orbits with an
isotropy symmetry group isomorphic to the discrete
dihedral groups contained in Coxeter with the
Coxeter number of G. These isotropy symmetries allow to determine the BPS
spectrum of the strong coupling chamber; and give another way to count the
total number of BPS and anti-BPS states of gauge theories. We
also build the matrix realization of these mutation groups from which we read directly the electric-magnetic
charges of the BPS and anti-BPS states of QFT as well as
their matrix intersections. We study as well the quiver mutation symmetries in
the weak coupling limit and give their links with infinite Coxeter groups. We
show amongst others that is contained in
; and isomorphic to the infinite Coxeter
. Other issues such as building
and are also
studied.Comment: LaTeX, 98 pages, 18 figures, Appendix I on groupoids adde
Gene conversion in human rearranged immunoglobulin genes
Over the past 20 years, many DNA sequences have been published suggesting that all or part of the V<sub>H</sub> segment of a rearranged immunoglobulin gene may be replaced in vivo. Two different mechanisms appear to be operating. One of these is very similar to primary V(D)J recombination, involving the RAG proteins acting upon recombination signal sequences, and this has recently been proven to occur. Other sequences, many of which show partial V<sub>H</sub> replacements with no addition of untemplated nucleotides at the V<sub>H</sub>–V<sub>H</sub> joint, have been proposed to occur by an unusual RAG-mediated recombination with the formation of hybrid (coding-to-signal) joints. These appear to occur in cells already undergoing somatic hypermutation in which, some authors are convinced, RAG genes are silenced. We recently proposed that the latter type of V<sub>H</sub> replacement might occur by homologous recombination initiated by the activity of AID (activation-induced cytidine deaminase), which is essential for somatic hypermutation and gene conversion. The latter has been observed in other species, but not in human Ig genes, so far. In this paper, we present a new analysis of sequences published as examples of the second type of rearrangement. This not only shows that AID recognition motifs occur in recombination regions but also that some sequences show replacement of central sections by a sequence from another gene, similar to gene conversion in the immunoglobulin genes of other species. These observations support the proposal that this type of rearrangement is likely to be AID-mediated rather than RAG-mediated and is consistent with gene conversion
Differential cross sections and spin density matrix elements for the reaction gamma p -> p omega
High-statistics differential cross sections and spin density matrix elements
for the reaction gamma p -> p omega have been measured using the CLAS at
Jefferson Lab for center-of-mass (CM) energies from threshold up to 2.84 GeV.
Results are reported in 112 10-MeV wide CM energy bins, each subdivided into
cos(theta_CM) bins of width 0.1. These are the most precise and extensive omega
photoproduction measurements to date. A number of prominent structures are
clearly present in the data. Many of these have not previously been observed
due to limited statistics in earlier measurements
Exclusive electroproduction on the proton at CLAS
The reaction has been measured, using the 5.754
GeV electron beam of Jefferson Lab and the CLAS detector. This represents the
largest ever set of data for this reaction in the valence region. Integrated
and differential cross sections are presented. The , and
dependences of the cross section are compared to theoretical calculations based
on -channel meson-exchange Regge theory on the one hand and on quark handbag
diagrams related to Generalized Parton Distributions (GPDs) on the other hand.
The Regge approach can describe at the 30% level most of the features
of the present data while the two GPD calculations that are presented in this
article which succesfully reproduce the high energy data strongly underestimate
the present data. The question is then raised whether this discrepancy
originates from an incomplete or inexact way of modelling the GPDs or the
associated hard scattering amplitude or whether the GPD formalism is simply
inapplicable in this region due to higher-twists contributions, incalculable at
present.Comment: 29 pages, 29 figure
Photodisintegration of He into p+t
The two-body photodisintegration of He into a proton and a triton has
been studied using the CEBAF Large-Acceptance Spectrometer (CLAS) at Jefferson
Laboratory. Real photons produced with the Hall-B bremsstrahlung-tagging system
in the energy range from 0.35 to 1.55 GeV were incident on a liquid He
target. This is the first measurement of the photodisintegration of He
above 0.4 GeV. The differential cross sections for the He
reaction have been measured as a function of photon-beam energy and
proton-scattering angle, and are compared with the latest model calculations by
J.-M. Laget. At 0.6-1.2 GeV, our data are in good agreement only with the
calculations that include three-body mechanisms, thus confirming their
importance. These results reinforce the conclusion of our previous study of the
three-body breakup of He that demonstrated the great importance of
three-body mechanisms in the energy region 0.5-0.8 GeV .Comment: 13 pages submitted in one tgz file containing 2 tex file and 22
postscrip figure
Search for Gravitational Waves from Primordial Black Hole Binary Coalescences in the Galactic Halo
We use data from the second science run of the LIGO gravitational-wave
detectors to search for the gravitational waves from primordial black hole
(PBH) binary coalescence with component masses in the range 0.2--.
The analysis requires a signal to be found in the data from both LIGO
observatories, according to a set of coincidence criteria. No inspiral signals
were found. Assuming a spherical halo with core radius 5 kpc extending to 50
kpc containing non-spinning black holes with masses in the range 0.2--, we place an observational upper limit on the rate of PBH coalescence
of 63 per year per Milky Way halo (MWH) with 90% confidence.Comment: 7 pages, 4 figures, to be submitted to Phys. Rev.
Measurement of Exclusive B Decays to Final States Containing a Charmed Baryon
Using data collected by the CLEO detector in the Upsilon(4S) region, we
report new measurements of the exclusive decays of B mesons into final states
of the type Lambda_c^+ p-bar n(pi), where n=0,1,2,3. We find signals in modes
with one, two and three pions and an upper limit for the two body decay
Lambda_c^+ pbar. We also make the first measurements of exclusive decays of B
mesons to Sigma_c p-bar n(pi), where n=0,1,2. We find signals in modes with one
and two pions and an upper limit for the two body decay Sigma_c p-bar.
Measurements of these modes shed light on the mechanisms involved in B decays
to baryons.Comment: 11 pages postscript, also available through
http://w4.lns.cornell.edu/public/CLNS, submitted to PR
A novel signalling screen demonstrates that CALR mutations activate essential MAPK signalling and facilitate megakaryocyte differentiation.
Most MPN patients lacking JAK2 mutations harbour somatic CALR mutations that are thought to activate cytokine signalling although the mechanism is unclear. To identify kinases important for survival of CALR-mutant cells we developed a novel strategy (KISMET) which utilises the full range of kinase selectivity data available from each inhibitor and thus takes advantage of off-target noise that limits conventional siRNA or inhibitor screens. KISMET successfully identified known essential kinases in haematopoietic and non-haematopoietic cell lines and identified the MAPK pathway as required for growth of the CALR-mutated MARIMO cells. Expression of mutant CALR in murine or human haematopoietic cell lines was accompanied by MPL-dependent activation of MAPK signalling, and MPN patients with CALR mutations showed increased MAPK activity in CD34-cells, platelets and megakaryocytes. Although CALR mutations resulted in protein instability and proteosomal degradation, mutant CALR was able to enhance megakaryopoiesis and pro-platelet production from human CD34+ progenitors. These data link aberrant MAPK activation to the MPN phenotype and identify it as a potential therapeutic target in CALR-mutant positive MPNs.Leukemia accepted article preview online, 14 October 2016. doi:10.1038/leu.2016.280.Work in the Green lab is supported by Leukemia and Lymphoma Research, Cancer Research UK, the NIHR Cambridge Biomedical Research Centre, the Cambridge Experimental Cancer Medicine Centre and the Leukemia & Lymphoma Society of America. WW is supported by the Austrian Science Foundation (J 3578-B21). CGA is supported by Kay Kendall Leukaemia Fund clinical research fellowship. UM is supported by a Cancer Research UK Clinician Scientist Fellowship. Work in the Huntly lab is supported by the European Research Council, the MRC (UK), Bloodwise, the Cambridge NIHR funded BRC, KKLF and a WT/MRC Stem Cell centre grant. Work in the Green and Huntly Labs is supported by core support grants by the Wellcome Trust to the Cambridge Institute for Medical Research (100140/z/12/z) and Wellcome Trust-MRC Cambridge Stem Cell Institute (097922/Z/11/Z)
photoproduction on the proton for photon energies from 0.725 to 2.875 GeV
Differential cross sections for the reaction have been
measured with the CEBAF Large Acceptance Spectrometer (CLAS) and a tagged
photon beam with energies from 0.725 to 2.875 GeV. Where available, the results
obtained here compare well with previously published results for the reaction.
Agreement with the SAID and MAID analyses is found below 1 GeV. The present set
of cross sections has been incorporated into the SAID database, and exploratory
fits have been made up to 2.7 GeV. Resonance couplings have been extracted and
compared to previous determinations. With the addition of these cross sections
to the world data set, significant changes have occurred in the high-energy
behavior of the SAID cross-section predictions and amplitudes.Comment: 18 pages, 10 figure
- …
