2,210 research outputs found
Fermion Masses in Emergent Electroweak Symmetry Breaking
We consider the generation of fermion masses in an emergent model of
electroweak symmetry breaking with composite gauge bosons. A universal
bulk fermion profile in a warped extra dimension is used for all fermion
flavors. Electroweak symmetry is broken at the UV (or Planck) scale where
boundary mass terms are added to generate the fermion flavor structure. This
leads to flavor-dependent nonuniversality in the gauge couplings. The effects
are suppressed for the light fermion generations but are enhanced for the top
quark where the and couplings can deviate at the
level in the minimal setup. By the AdS/CFT correspondence our model
implies that electroweak symmetry is not a fundamental gauge symmetry. Instead
the Standard Model with massive fermions and gauge bosons is an effective
chiral Lagrangian for some underlying confining strong dynamics at the TeV
scale, where mass is generated without a Higgs mechanism.Comment: modified discussion in Sec 3.1, version published in JHE
Fine Tuning in General Gauge Mediation
We study the fine-tuning problem in the context of general gauge mediation.
Numerical analyses toward for relaxing fine-tuning are presented. We analyse
the problem in typical three cases of the messenger scale, that is, GUT
( GeV), intermediate ( GeV), and relatively low energy
( GeV) scales. In each messenger scale, the parameter space reducing the
degree of tuning as around 10% is found. Certain ratios among gluino mass, wino
mass and soft scalar masses are favorable. It is shown that the favorable
region becomes narrow as the messenger scale becomes lower, and tachyonic
initial conditions of stop masses at the messenger scale are favored to relax
the fine-tuning problem for the relatively low energy messenger scale. Our
spectra would also be important from the viewpoint of the problem.Comment: 22 pages, 16 figures, comment adde
An improved observable for the forward-backward asymmetry in B -> K* l+ l- and Bs -> phi l+ l-
We study the decay B -> K* l+ l- in the QCD factorization approach and
propose a new integrated observable whose dependence on the form factors is
almost negligible, consequently the non--perturbative error is significantly
reduced and indeed its overall theoretical error is dominated by perturbative
scale uncertainties. The new observable we propose is the ratio between the
integrated forward--backward asymmetry in the [4,6] GeV^2 and [1,4] GeV^2
dilepton invariant mass bins. This new observable is particularly interesting
because, when compared to the location of the zero of the FBA spectrum, it is
experimentally easier to measure and its theoretical uncertainties are almost
as small; moreover it displays a very strong dependence on the phase of the
Wilson coefficient C_10 that is otherwise only accessible through complicated
CP violating asymmetries. We illustrate the new physics sensitivity of this
observable within the context of few extensions of the Standard Model, namely
the SM with four generations, an MSSM with non--vanishing source of flavor
changing neutral currents in the down squark sector and a Z' model with tree
level flavor changing couplings.Comment: 19 pages, 7 figure
Effects of beta-alanine supplementation on brain homocarnosine/carnosine signal and cognitive function: an exploratory study
Objectives: Two independent studies were conducted to examine the effects of 28 d of beta-alanine supplementation at 6.4 g d-1 on brain homocarnosine/carnosine signal in omnivores and vegetarians (Study 1) and on cognitive function before and after exercise in trained cyclists (Study 2). Methods: In Study 1, seven healthy vegetarians (3 women and 4 men) and seven age- and sex-matched omnivores undertook a brain 1H-MRS exam at baseline and after beta-alanine supplementation. In study 2, nineteen trained male cyclists completed four 20-Km cycling time trials (two pre supplementation and two post supplementation), with a battery of cognitive function tests (Stroop test, Sternberg paradigm, Rapid Visual Information Processing task) being performed before and after exercise on each occasion. Results: In Study 1, there were no within-group effects of beta-alanine supplementation on brain homocarnosine/carnosine signal in either vegetarians (p = 0.99) or omnivores (p = 0.27); nor was there any effect when data from both groups were pooled (p = 0.19). Similarly, there was no group by time interaction for brain homocarnosine/carnosine signal (p = 0.27). In study 2, exercise improved cognitive function across all tests (P0.05) of beta-alanine supplementation on response times or accuracy for the Stroop test, Sternberg paradigm or RVIP task at rest or after exercise. Conclusion: 28 d of beta-alanine supplementation at 6.4g d-1 appeared not to influence brain homocarnosine/ carnosine signal in either omnivores or vegetarians; nor did it influence cognitive function before or after exercise in trained cyclists
Z' Bosons at Colliders: a Bayesian Viewpoint
We revisit the CDF data on di-muon production to impose constraints on a
large class of Z' bosons occurring in a variety of E_6 GUT based models. We
analyze the dependence of these limits on various factors contributing to the
production cross-section, showing that currently systematic and theoretical
uncertainties play a relatively minor role. Driven by this observation, we
emphasize the use of the Bayesian statistical method, which allows us to
straightforwardly (i) vary the gauge coupling strength, g', of the underlying
U(1)'; (ii) include interference effects with the Z' amplitude (which are
especially important for large g'); (iii) smoothly vary the U(1)' charges; (iv)
combine these data with the electroweak precision constraints as well as with
other observables obtained from colliders such as LEP 2 and the LHC; and (v)
find preferred regions in parameter space once an excess is seen. We adopt this
method as a complementary approach for a couple of sample models and find
limits on the Z' mass, generally differing by only a few percent from the
corresponding CDF ones when we follow their approach. Another general result is
that the interference effects are quite relevant if one aims at discriminating
between models. Finally, the Bayesian approach frees us of any ad hoc
assumptions about the number of events needed to constitute a signal or
exclusion limit for various actual and hypothetical reference energies and
luminosities at the Tevatron and the LHC.Comment: PDFLaTeX, 24 pages, 7 figures. Version with improved tables and
figure
A precision study of the fine tuning in the DiracNMSSM
Recently the DiracNMSSM has been proposed as a possible solution to reduce
the fine tuning in supersymmetry. We determine the degree of fine tuning needed
in the DiracNMSSM with and without non-universal gaugino masses and compare it
with the fine tuning in the GNMSSM. To apply reasonable cuts on the allowed
parameter regions we perform a precise calculation of the Higgs mass. In
addition, we include the limits from direct SUSY searches and dark matter
abundance. We find that both models are comparable in terms of fine tuning,
with the minimal fine tuning in the GNMSSM slightly smaller.Comment: 20 pages + appendices, 10 figure
The inner centromere is a biomolecular condensate scaffolded by the chromosomal passenger complex.
The inner centromere is a region on every mitotic chromosome that enables specific biochemical reactions that underlie properties, such as the maintenance of cohesion, the regulation of kinetochores and the assembly of specialized chromatin, that can resist microtubule pulling forces. The chromosomal passenger complex (CPC) is abundantly localized to the inner centromeres and it is unclear whether it is involved in non-kinase activities that contribute to the generation of these unique chromatin properties. We find that the borealin subunit of the CPC drives phase separation of the CPC in vitro at concentrations that are below those found on the inner centromere. We also provide strong evidence that the CPC exists in a phase-separated state at the inner centromere. CPC phase separation is required for its inner-centromere localization and function during mitosis. We suggest that the CPC combines phase separation, kinase and histone code-reading activities to enable the formation of a chromatin body with unique biochemical activities at the inner centromere
Exploring T and S parameters in Vector Meson Dominance Models of Strong Electroweak Symmetry Breaking
We revisit the electroweak precision tests for Higgsless models of strong
EWSB. We use the Vector Meson Dominance approach and express S and T via
couplings characterizing vector and axial spin-1 resonances of the strong
sector. These couplings are constrained by the elastic unitarity and by
requiring a good UV behavior of various formfactors. We pay particular
attention to the one-loop contribution of resonances to T (beyond the chiral
log), and to how it can improve the fit. We also make contact with the recent
studies of Conformal Technicolor. We explain why the second Weinberg sum rule
never converges in these models, and formulate a condition necessary for
preserving the custodial symmetry in the IR.Comment: 35 pages, 7 figures; v3: refs added, to appear in JHE
Measuring V_ub and probing SUSY with double ratios of purely leptonic decays of B and D mesons
The experimental prospects for precise measurements of the leptonic decays
B_u -> tau nu / mu nu, B_s -> mu+ mu-, D -> mu nu and D_s -> mu nu / tau nu are
very promising. Double ratios involving four of these decays can be defined in
which the dependence on the values of the decay constants is essentially
eliminated, thus enabling complementary measurements of the CKM matrix element
V_ub with a small theoretical error. We quantify the experimental error in a
possible future measurement of |V_ub| using this approach, and show that it is
competitive with the anticipated precision from the conventional approaches.
Moreover, it is shown that such double ratios can be more effective than the
individual leptonic decays as a probe of the parameter space of supersymmetric
models. We emphasize that the double ratios have the advantage of using |V_ub|
as an input parameter (for which there is experimental information), while the
individual decays have an uncertainty from the decay constants (e.g. f_B_s),
and hence a reliance on theoretical techniques such as lattice QCD.Comment: 21 pages, 4 figure
- …
