17 research outputs found
Recommended from our members
A method for performance diagnosis and evaluation of video trackers
Several measures for evaluating multi-target video trackers exist that generally aim at providing ‘end performance.’ End performance is important particularly for ranking and comparing trackers. However, for a deeper insight into trackers’ performance it would also be desirable to analyze key contributory factors (false positives, false negatives, ID changes) that (implicitly or explicitly) lead to the attainment of a certain end performance. Specifically, this paper proposes a new approach to enable a diagnosis of the performance of multi-target trackers as well as providing a means to determine the end performance to still enable their comparison in a video sequence. Diagnosis involves analyzing probability density functions of false positives, false negatives and ID changes of trackers in a sequence. End performance is obtained in terms of the extracted performance scores related to false positives, false negatives and ID changes. In the experiments, we used four state-of-the-art trackers on challenging real-world public datasets to show the effectiveness of the proposed approach
A Hierarchical Probabilistic Model for Rapid Object Categorization in Natural Scenes
Humans can categorize objects in complex natural scenes within 100–150 ms. This amazing ability of rapid categorization has motivated many computational models. Most of these models require extensive training to obtain a decision boundary in a very high dimensional (e.g., ∼6,000 in a leading model) feature space and often categorize objects in natural scenes by categorizing the context that co-occurs with objects when objects do not occupy large portions of the scenes. It is thus unclear how humans achieve rapid scene categorization
