28 research outputs found
Solution conformation and flexibility of capsular polysaccharides from Neisseria meningitidis and glycoconjugates with the tetanus toxoid protein
The structural integrity of meningococcal native, micro-fluidized and activated capsular polysaccharides and their glycoconjugates – in the form most relevant to their potential use as vaccines (dilute solution) - have been investigated with respect to their homogeneity, conformation and flexibility. Sedimentation velocity analysis showed that the polysaccharide size distributions were generally bimodal with some evidence for higher molar mass forms at higher concentration. Weight average molar masses Mw where lower for activated polysaccharides. Conjugation with tetanus toxoid protein however greatly increased the molar mass and polydispersity of the final conjugates. Glycoconjugates had an approximately unimodal log-normal but broad and large molar mass profiles, confirmed by sedimentation equilibrium “SEDFIT MSTAR” analysis. Conformation analysis using HYDFIT (which globally combines sedimentation and viscosity data), “Conformation Zoning” and Wales-van Holde approaches showed a high degree of flexibility – at least as great as the unconjugated polysaccharides, and very different from the tetanus toxoid (TT) protein used for the conjugation. As with the recently published finding for Hib-TT complexes, it is the carbohydrate component that dictates the solution behaviour of these glycoconjugates, although the lower intrinsic viscosities suggest some degree of compaction of the carbohydrate chains around the protein
Historical review of clinical vaccine studies at Oswaldo Cruz Institute and Oswaldo Cruz Foundation - technological development issues
The Role of the Secretory Immune System in Protection against Agents Which Infect the Respiratory Tract
Protection against meningococcal serogroup ACYW disease in complement-deficient individuals vaccinated with the tetravalent meningococcal capsular polysaccharide vaccine
Individuals with properdin, C3 or late complement component deficiency (LCCD) frequently develop meningococcal disease. Vaccination of these persons has been recommended, although reports on efficacy are scarce and not conclusive. We immunized 53 complement-deficient persons, of whom 19 had properdin deficiency, seven a C3 deficiency syndrome and 27 had LCCD with the tetravalent (ACYW) meningococcal capsular polysaccharide vaccine. Serological studies were performed in 43 of them. As controls 25 non-complement-deficient relatives of the complement-deficient vaccinees and 21 healthy non-related controls were vaccinated. Post-vaccination, complement-deficient individuals and controls developed a significant immunoglobulin-specific antibody response to capsular polysaccharides group A, C, Y, W135, but a great individual variation was noticed. Also, the proportion of vaccinees of the various vaccinated groups with a significant increase in bactericidal titre (assayed with heterologous complement) was similar. Opsonization of meningococci A and W135 with sera of the 20 LCCD individuals yielded in 11 (55%) and eight (40%) sera a significant increase of phagocytic activity after vaccination, respectively. Despite vaccination, four complement-deficient patients experienced six episodes of meningococcal disease in the 6 years post-vaccination. Four episodes were due to serogroup B, not included in the vaccine. Despite good response to serogroup Y upon vaccination, disease due to serogroup Y occurred in two C8β-deficient patients, 3.5 and 5 years post-vaccination. These results support the recommendation to vaccinate complement-deficient individuals and to revaccinate them every 3 years
