385 research outputs found
Two-loop Sudakov form factor in ABJM
This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited
More three-point correlators of giant magnons with finite size
In the framework of the semiclassical approach, we compute the normalized
structure constants in three-point correlation functions, when two of the
vertex operators correspond to heavy string states, while the third vertex
corresponds to a light state. This is done for the case when the heavy string
states are finite-size giant magnons with one or two angular momenta, and for
two different choices of the light state, corresponding to dilaton operator and
primary scalar operator. The relevant operators in the dual gauge theory are
Tr(F_{\mu\nu}^2 Z^j+...) and Tr(Z^j). We first consider the case of AdS_5 x S^5
and N = 4 super Yang-Mills. Then we extend the obtained results to the
gamma-deformed AdS_5 x S^5_\gamma, dual to N = 1 super Yang-Mills theory,
arising as an exactly marginal deformation of N = 4 super Yang-Mills.Comment: 14 pages, no figure
Strings in AdS_4 x CP^3: finite size spectrum vs. Bethe Ansatz
We compute the first curvature corrections to the spectrum of light-cone
gauge type IIA string theory that arise in the expansion of about a plane-wave limit. The resulting spectrum is shown to
match precisely, both in magnitude and degeneration that of the corresponding
solutions of the all-loop Gromov--Vieira Bethe Ansatz. The one-loop dispersion
relation correction is calculated for all the single oscillator states of the
theory, with the level matching condition lifted. It is shown to have all
logarithmic divergences cancelled and to leave only a finite exponentially
suppressed contribution, as shown earlier for light bosons. We argue that there
is no ambiguity in the choice of the regularization for the self-energy sum,
since the regularization applied is the only one preserving unitarity.
Interaction matrices in the full degenerate two-oscillator sector are
calculated and the spectrum of all two light magnon oscillators is completely
determined. The same finite-size corrections, at the order 1/J, where is
the length of the chain, in the two-magnon sector are calculated from the all
loop Bethe Ansatz. The corrections obtained by the two completely different
methods coincide up to the fourth order in . We
conjecture that the equivalence extends to all orders in and to
higher orders in 1/J.Comment: 32 pages. Published version; journal reference adde
Holographic Correlation Functions for Open Strings and Branes
In this paper, we compute holographically the two-point and three-point
functions of giant gravitons with open strings. We consider the maximal giant
graviton in and the string configurations corresponding to the ground
states of Z=0 and Y=0 open spin chain, and the spinning string in AdS
corresponding to the derivative type impurities in Y=0 or Z=0 open spin chain
as well. We treat the D-brane and open string contribution separately and find
the corresponding D3-brane and string configurations in bulk which connect the
composite operators at the AdS boundary. We apply a new prescription to
treat the string state contribution and find agreements for the two-point
functions. For the three-point functions of two giant gravitons with open
strings and one certain half-BPS chiral primary operator, we find that the
D-brane contributions to structure constant are always vanishing and the open
string contribution for the Y=0 ground state is in perfect match with the
prediction in the free field limit.Comment: 25 page
Universal features of correlated bursty behaviour
Inhomogeneous temporal processes, like those appearing in human
communications, neuron spike trains, and seismic signals, consist of
high-activity bursty intervals alternating with long low-activity periods. In
recent studies such bursty behavior has been characterized by a fat-tailed
inter-event time distribution, while temporal correlations were measured by the
autocorrelation function. However, these characteristic functions are not
capable to fully characterize temporally correlated heterogenous behavior. Here
we show that the distribution of the number of events in a bursty period serves
as a good indicator of the dependencies, leading to the universal observation
of power-law distribution in a broad class of phenomena. We find that the
correlations in these quite different systems can be commonly interpreted by
memory effects and described by a simple phenomenological model, which displays
temporal behavior qualitatively similar to that in real systems
Wave functions and correlation functions for GKP strings from integrability
We develop a general method of computing the contribution of the vertex
operators to the semi-classical correlation functions of heavy string states,
based on the state-operator correspondence and the integrable structure of the
system. Our method requires only the knowledge of the local behavior of the
saddle point configuration around each vertex insertion point and can be
applied to cases where the precise forms of the vertex operators are not known.
As an important application, we compute the contributions of the vertex
operators to the three-point functions of the large spin limit of the
Gubser-Klebanov-Polyakov (GKP) strings in spacetime, left unevaluated
in our previous work [arXiv:1110.3949] which initiated such a study. Combining
with the finite part of the action already computed previously and with the
newly evaluated divergent part of the action, we obtain finite three-point
functions with the expected dependence of the target space boundary coordinates
on the dilatation charge and the spin.Comment: 80 pages, 7 figures, v2: typos and minor errors corrected, a
reference added, v3: typos and a reference corrected, published versio
Correlation functions of three heavy operators - the AdS contribution
We consider operators in N=4 SYM theory which are dual, at strong coupling,
to classical strings rotating in S^5. Three point correlation functions of such
operators factorize into a universal contribution coming from the AdS part of
the string sigma model and a state-dependent S^5 contribution. Consequently a
similar factorization arises for the OPE coefficients. In this paper we
evaluate the AdS universal factor of the OPE coefficients which is explicitly
expressed just in terms of the anomalous dimensions of the three operators.Comment: 49 pages, 3 figures; v.2 references corrected; v3: corrected
discussion in section 5, results unchange
Holographic three-point functions for short operators
We consider holographic three-point functions for operators dual to short
string states at strong coupling in N=4 super Yang-Mills. We treat the states
as point-like as they come in from the boundary but as strings in the
interaction region in the bulk. The interaction position is determined by
saddle point, which is equivalent to conservation of the canonical momentum for
the interacting particles, and leads to conservation of their conformal
charges. We further show that for large dimensions the rms size of the
interaction region is small compared to the radius of curvature of the AdS
space, but still large compared to the string Compton wave-length. Hence, one
can approximate the string vertex operators as flat-space vertex operators with
a definite momentum, which depends on the conformal and R-charges of the
operator. We then argue that the string vertex operator dual to a primary
operator is chosen by satisfying a twisted version of Q^L=Q^R, up to spurious
terms. This leads to a unique choice for a scalar vertex operator with the
appropriate charges at the first massive level. We then comment on some
features of the corresponding three-point functions, including the application
of these results to Konishi operators.Comment: 24 pages; v2: References added, typos fixed, minor change
Holographic three-point functions of giant gravitons
Working within the AdS/CFT correspondence we calculate the three-point
function of two giant gravitons and one pointlike graviton using methods of
semiclassical string theory and considering both the case where the giant
gravitons wrap an S^3 in S^5 and the case where the giant gravitons wrap an S^3
in AdS_5. We likewise calculate the correlation function in N=4 SYM using two
Schur polynomials and a single trace chiral primary. We find that the gauge and
string theory results have structural similarities but do not match perfectly,
and interpret this in terms of the Schur polynomials' inability to interpolate
between dual giant and pointlike gravitons.Comment: 21 page
Holographic 3-point function at one loop
We explore the recent weak/strong coupling match of three-point functions in
the AdS/CFT correspondence for two semi-classical operators and one light
chiral primary operator found by Escobedo et al. This match is between the
tree-level three-point function with the two semi-classical operators described
by coherent states while on the string side the three-point function is found
in the Frolov-Tseytlin limit. We compute the one-loop correction to the
three-point function on the gauge theory side and compare this to the
corresponding correction on the string theory side. We find that the
corrections do not match. Finally, we discuss the possibility of further
contributions on the gauge theory side that can alter our results.Comment: 24 pages, 2 figures. v2: Typos fixed, Ref. added, figure improved.
v3: Several typos and misprints fixed, Ref. updated, figures improved, new
section 2.3 added on correction from spin-flipped coherent state,
computations on string theory side improve
- …
