250 research outputs found
Distinguishing Various Models of the 125 GeV Boson in Vector Boson Fusion
The hint of a new particle around 125 GeV at the LHC through the decay modes
of diphoton and a number of others may point to quite a number of
possibilities. While at the LHC the dominant production mechanism for the Higgs
boson of the standard model and some other extensions is via the gluon fusion
process, the alternative vector boson fusion is more sensitive to electroweak
symmetry breaking through the gauge-Higgs couplings and therefore can be used
to probe for models beyond the standard model. In this work, using the well
known dijet-tagging technique to single out the vector boson fusion mechanism,
we investigate its capability to discriminate a number of models that have been
suggested to give an enhanced inclusive diphoton production rate, including the
standard model Higgs boson, fermiophobic Higgs boson, Randall-Sundrum radion,
inert-Higgs-doublet model, two-Higgs-doublet model, and the MSSM. The rates in
vector-boson fusion can give more information of the underlying models to help
distinguishing among the models.Comment: 31 pages, 3 figures; in this version some wordings are change
New Physics Signals in Longitudinal Gauge Boson Scattering at the LHC
We introduce a novel technique designed to look for signatures of new physics
in vector boson fusion processes at the TeV scale. This functions by measuring
the polarization of the vector bosons to determine the relative longitudinal to
transverse production. In studying this ratio we can directly probe the high
energy E^2-growth of longitudinal vector boson scattering amplitudes
characteristic of models with non-Standard Model (SM) interactions. We will
focus on studying models parameterized by an effective Lagrangian that include
a light Higgs with non-SM couplings arising from TeV scale new physics
associated with the electroweak symmetry breaking, although our technique can
be used in more general scenarios. We will show that this technique is stable
against the large uncertainties that can result from variations in the
factorization scale, improving upon previous studies that measure cross section
alone
An improved observable for the forward-backward asymmetry in B -> K* l+ l- and Bs -> phi l+ l-
We study the decay B -> K* l+ l- in the QCD factorization approach and
propose a new integrated observable whose dependence on the form factors is
almost negligible, consequently the non--perturbative error is significantly
reduced and indeed its overall theoretical error is dominated by perturbative
scale uncertainties. The new observable we propose is the ratio between the
integrated forward--backward asymmetry in the [4,6] GeV^2 and [1,4] GeV^2
dilepton invariant mass bins. This new observable is particularly interesting
because, when compared to the location of the zero of the FBA spectrum, it is
experimentally easier to measure and its theoretical uncertainties are almost
as small; moreover it displays a very strong dependence on the phase of the
Wilson coefficient C_10 that is otherwise only accessible through complicated
CP violating asymmetries. We illustrate the new physics sensitivity of this
observable within the context of few extensions of the Standard Model, namely
the SM with four generations, an MSSM with non--vanishing source of flavor
changing neutral currents in the down squark sector and a Z' model with tree
level flavor changing couplings.Comment: 19 pages, 7 figure
Beautiful Mirrors at the LHC
We explore the "Beautiful Mirrors" model, which aims to explain the measured
value of , discrepant at the level. This scenario
introduces vector-like quarks which mix with the bottom, subtly affecting its
coupling to the . The spectrum of the new particles consists of two
bottom-like quarks and a charge -4/3 quark, all of which have electroweak
interactions with the third generation. We explore the phenomenology and
discovery reach for these new particles at the LHC, exploring single mirror
quark production modes whose rates are proportional to the same mixing
parameters which resolve the anomaly. We find that for mirror quark
masses is required to
reasonably establish the scenario and extract the relevant mixing parameters.Comment: version to be published in JHE
Vanishing Minors in the Neutrino Mass Matrix from Abelian Gauge Symmetries
Augmenting the Standard Model by three right-handed neutrinos allows for an
anomaly-free gauge group extension G_max = U(1)_(B-L) x U(1)_(L_e-L_mu) x
U(1)_(L_mu-L_tau). While simple U(1) subgroups of G_max have already been
discussed in the context of approximate flavor symmetries, we show how two-zero
textures in the right-handed neutrino Majorana mass matrix can be enforced by
the flavor symmetry, which is spontaneously broken very economically by singlet
scalars. These zeros lead to two vanishing minors in the low-energy neutrino
mass matrix after the seesaw mechanism. This study may provide a new testing
ground for a zero-texture approach: the different classes of two-zero textures
with almost identical neutrino oscillation phenomenology can in principle be
distinguished by their different Z' interactions at colliders.Comment: 12 pages; Extended and clarified discussion; comments on finetuning
in the textures; matches published versio
5D UED: Flat and Flavorless
5D UED is not automatically minimally flavor violating. This is due to flavor
asymmetric counter-terms required on the branes. Additionally, there are likely
to be higher dimensional operators which directly contribute to flavor
observables. We document a mostly unsuccessful attempt at utilizing
localization in a flat extra dimension to resolve these flavor constraints
while maintaining KK-parity as a good quantum number. It is unsuccessful
insofar as we seem to be forced to add brane operators in such a way as to
precisely mimic the effects of a double throat warped extra dimension. In the
course of our efforts, we encounter and present solutions to a problem common
to many extra dimensional models in which fields are "doubly localized:"
ultra-light modes. Under scrutiny, this issue seems tied to an intrinsic
tension between maintaining Kaluza-Klein parity and resolving mass hierarchies
via localization.Comment: 27 pages, 6 figure
Wilson Lines and a Canonical Basis of SU(4) Heterotic Standard Models
The spontaneous breaking of SU(4) heterotic standard models by Z_3 x Z_3
Wilson lines to the MSSM with three right-handed neutrino supermultiplets and
gauge group SU(3)_C x SU(2)_L x U(1) x U(1) is explored. The two-dimensional
subspace of the Spin(10) Lie algebra that commutes with su(3)_C + su(2)_L is
analyzed. It is shown that there is a unique basis for which the initial soft
supersymmetry breaking parameters are uncorrelated and for which the U(1) x
U(1) field strengths have no kinetic mixing at any scale. If the Wilson lines
"turn on" at different scales, there is an intermediate regime with either a
left-right or a Pati-Salam type model. We compute their spectra directly from
string theory, and adjust the associated mass parameter so that all gauge
parameters exactly unify. A detailed analysis of the running gauge couplings
and soft gaugino masses is presented.Comment: 59 pages, 9 figure
An Alternative Yukawa Unified SUSY Scenario
Supersymmetric SO(10) Grand Unified Theories with Yukawa unification
represent an appealing possibility for physics beyond the Standard Model.
However Yukawa unification is made difficult by large threshold corrections to
the bottom mass. Generally one is led to consider models where the sfermion
masses are large in order to suppress these corrections. Here we present
another possibility, in which the top and bottom GUT scale Yukawa couplings are
equal to a component of the charged lepton Yukawa matrix at the GUT scale in a
basis where this matrix is not diagonal. Physically, this weak eigenstate
Yukawa unification scenario corresponds to the case where the charged leptons
that are in the 16 of SO(10) containing the top and bottom quarks mix with
their counterparts in another SO(10) multiplet. Diagonalizing the resulting
Yukawa matrix introduces mixings in the neutrino sector. Specifically we find
that for a large region of parameter space with relatively light sparticles,
and which has not been ruled out by current LHC or other data, the mixing
induced in the neutrino sector is such that , in
agreement with data. The phenomenological implications are analyzed in some
detail.Comment: 32 pages, 22 Figure
Testing Yukawa-unified SUSY during year 1 of LHC: the role of multiple b-jets, dileptons and missing E_T
We examine the prospects for testing SO(10) Yukawa-unified supersymmetric
models during the first year of LHC running at \sqrt{s}= 7 TeV, assuming
integrated luminosity values of 0.1 to 1 fb^-1. We consider two cases: the
Higgs splitting (HS) and the D-term splitting (DR3) models. Each generically
predicts light gluinos and heavy squarks, with an inverted scalar mass
hierarchy. We hence expect large rates for gluino pair production followed by
decays to final states with large b-jet multiplicity. For 0.2 fb^-1 of
integrated luminosity, we find a 5 sigma discovery reach of m(gluino) ~ 400 GeV
even if missing transverse energy, E_T^miss, is not a viable cut variable, by
examining the multi-b-jet final state. A corroborating signal should stand out
in the opposite-sign (OS) dimuon channel in the case of the HS model; the DR3
model will require higher integrated luminosity to yield a signal in the OS
dimuon channel. This region may also be probed by the Tevatron with 5-10 fb^-1
of data, if a corresponding search in the multi-b+ E_T^miss channel is
performed. With higher integrated luminosities of ~1 fb^-1, using E_T^miss plus
a large multiplicity of b-jets, LHC should be able to discover Yukawa-unified
SUSY with m(gluino) up to about 630 GeV. Thus, the year 1 LHC reach for
Yukawa-unified SUSY should be enough to either claim a discovery of the gluino,
or to very nearly rule out this class of models, since higher values of
m(gluino) lead to rather poor Yukawa unification.Comment: 32 pages including 31 EPS figure
T-parity, its problems and their solution
We point out a basic difficulty in the construction of little-Higgs models
with T-parity which is overlooked by large part of the present literature.
Almost all models proposed so far fail to achieve their goal: they either
suffer from sizable electroweak corrections or from a breakdown of collective
breaking. We provide a model building recipe to bypass the above problem and
apply it to build the simplest T-invariant extension of the Littlest Higgs. Our
model predicts additional T-odd pseudo-Goldstone bosons with weak scale masses.Comment: 25 pages, 2 appendice
- …
