199 research outputs found

    Potentiation of thrombus instability: a contributory mechanism to the effectiveness of antithrombotic medications

    Get PDF
    © The Author(s) 2018The stability of an arterial thrombus, determined by its structure and ability to resist endogenous fibrinolysis, is a major determinant of the extent of infarction that results from coronary or cerebrovascular thrombosis. There is ample evidence from both laboratory and clinical studies to suggest that in addition to inhibiting platelet aggregation, antithrombotic medications have shear-dependent effects, potentiating thrombus fragility and/or enhancing endogenous fibrinolysis. Such shear-dependent effects, potentiating the fragility of the growing thrombus and/or enhancing endogenous thrombolytic activity, likely contribute to the clinical effectiveness of such medications. It is not clear how much these effects relate to the measured inhibition of platelet aggregation in response to specific agonists. These effects are observable only with techniques that subject the growing thrombus to arterial flow and shear conditions. The effects of antithrombotic medications on thrombus stability and ways of assessing this are reviewed herein, and it is proposed that thrombus stability could become a new target for pharmacological intervention.Peer reviewedFinal Published versio

    Overall Survival Time Prediction for High-grade Glioma Patients based on Large-scale Brain Functional Networks

    Get PDF
    High-grade glioma (HGG) is a lethal cancer with poor outcome. Accurate preoperative overall survival (OS) time prediction for HGG patients is crucial for treatment planning. Traditional presurgical and noninvasive OS prediction studies have used radiomics features at the local lesion area based on the magnetic resonance images (MRI). However, the highly complex lesion MRI appearance may have large individual variability, which could impede accurate individualized OS prediction. In this paper, we propose a novel concept, namely brain connectomics-based OS prediction. It is based on presurgical resting-state functional MRI (rs-fMRI) and the non-local, large-scale brain functional networks where the global and systemic prognostic features rather than the local lesion appearance are used to predict OS. We propose that the connectomics features could capture tumor-induced network-level alterations that are associated with prognosis. We construct both low-order (by means of sparse representation with regional rs-fMRI signals) and high-order functional connectivity (FC) networks (characterizing more complex multi-regional relationship by synchronized dynamics FC time courses). Then, we conduct a graph-theoretic analysis on both networks for a jointly, machine-learning-based individualized OS prediction. Based on a preliminary dataset (N = 34 with bad OS, mean OS, ~400 days; N = 34 with good OS, mean OS, ~1030 days), we achieve a promising OS prediction accuracy (86.8%) on separating the individuals with bad OS from those with good OS. However, if using only conventionally derived descriptive features (e.g., age and tumor characteristics), the accuracy is low (63.2%). Our study highlights the importance of the rs-fMRI and brain functional connectomics for treatment planning

    Hypofibrinolysis in diabetes: a therapeutic target for the reduction of cardiovascular risk

    Get PDF
    An enhanced thrombotic environment and premature atherosclerosis are key factors for the increased cardiovascular risk in diabetes. The occlusive vascular thrombus, formed secondary to interactions between platelets and coagulation proteins, is composed of a skeleton of fibrin fibres with cellular elements embedded in this network. Diabetes is characterised by quantitative and qualitative changes in coagulation proteins, which collectively increase resistance to fibrinolysis, consequently augmenting thrombosis risk. Current long-term therapies to prevent arterial occlusion in diabetes are focussed on anti-platelet agents, a strategy that fails to address the contribution of coagulation proteins to the enhanced thrombotic milieu. Moreover, antiplatelet treatment is associated with bleeding complications, particularly with newer agents and more aggressive combination therapies, questioning the safety of this approach. Therefore, to safely control thrombosis risk in diabetes, an alternative approach is required with the fibrin network representing a credible therapeutic target. In the current review, we address diabetes-specific mechanistic pathways responsible for hypofibrinolysis including the role of clot structure, defects in the fibrinolytic system and increased incorporation of anti-fibrinolytic proteins into the clot. Future anti-thrombotic therapeutic options are discussed with special emphasis on the potential advantages of modulating incorporation of the anti-fibrinolytic proteins into fibrin networks. This latter approach carries theoretical advantages, including specificity for diabetes, ability to target a particular protein with a possible favourable risk of bleeding. The development of alternative treatment strategies to better control residual thrombosis risk in diabetes will help to reduce vascular events, which remain the main cause of mortality in this condition

    Prospective assessment of Y-chromosome microdeletions and reproductive outcomes among infertile couples of Japanese and African origin

    Get PDF
    BACKGROUND: To compare the frequency of Y-chromosome microdeletions in Japanese and African azoospermic and oligozoospermic men and describe embryo characteristics and reproductive outcome following in vitro fertilization (IVF) with intracytoplasmic sperm injection (ICSI). METHODS: Our study was performed prospectively at two centers, a private IVF clinic and a university hospital. Japanese and African (Tanzanian) men with nonobstructive azoospermia (NOA) and oligozoospermia (concentration < 5 × 10(6 )/ml) were evaluated for Y-chromosome microdeletions (n = 162). Of the 47 men with NOA, 26 were Japanese and 21 were Africans. Of the 115 men with oligozoospermia, 87 were Japanese and 28 were Africans. Reproductive outcomes of patients with Y-chromosome microdeletions were then compared with those of 19 IVF+ICSI cycles performed on couples with Y-chromosome intact males/tubal factor infertility which served as a control group. RESULTS: Seven azoospermic and oligozoospermic patients had Y-chromosome deletions; the total number of deletions in the AZFc region was five. There was only one deletion in the AZFa region and one complete deletion involving all three regions (AZFa, b, and c) within AZF. In our study population, microdeletion frequency among Japanese men was 6.2% (95% CI, 4.25% – 14.45%), whereas no deletions were identified in the African group (95% CI, 0.0% – 7.27%). The difference between the two groups was not statistically significant, however. Embryos derived from ICSI utilizing sperm with Y-chromosome microdeletion showed reduced rates of fertilization, blastocyst development, implantation, and pregnancy compared to the Y-chromosome intact group, although these observed differences were not statistically significant. CONCLUSION: The observed frequency of Y-chromosome microdeletion was 6.2% among Japanese azoospermic and oligozoospermic males; no microdeletions were identified among our African study patients. In this population of couples undergoing IVF+ICSI, there was no statistically significant difference in embryo characteristics or pregnancy outcome between patients with Y-chromosome microdeletion and those with an intact Y-chromosome

    Non-Linear Elasticity of Extracellular Matrices Enables Contractile Cells to Communicate Local Position and Orientation

    Get PDF
    Most tissue cells grown in sparse cultures on linearly elastic substrates typically display a small, round phenotype on soft substrates and become increasingly spread as the modulus of the substrate increases until their spread area reaches a maximum value. As cell density increases, individual cells retain the same stiffness-dependent differences unless they are very close or in molecular contact. On nonlinear strain-stiffening fibrin gels, the same cell types become maximally spread even when the low strain elastic modulus would predict a round morphology, and cells are influenced by the presence of neighbors hundreds of microns away. Time lapse microscopy reveals that fibroblasts and human mesenchymal stem cells on fibrin deform the substrate by several microns up to five cell lengths away from their plasma membrane through a force limited mechanism. Atomic force microscopy and rheology confirm that these strains locally and globally stiffen the gel, depending on cell density, and this effect leads to long distance cell-cell communication and alignment. Thus cells are acutely responsive to the nonlinear elasticity of their substrates and can manipulate this rheological property to induce patterning

    ‘Classical' but not ‘other' mutations of EGFR kinase domain are associated with clinical outcome in gefitinib-treated patients with non-small cell lung cancer

    Get PDF
    ‘Classical' mutations in the EGFR tyrosine kinase domain (exons 18, 19 and 21) have been associated with sensitivity to tyrosine kinase inhibitors (TKIs) in patients with NSCLC. The aim of the current study was to evaluate whether other than the classical G719X, DEL19 and L858R mutations of EGFR confer sensitivity to TKIs. Genomic DNA was extracted from microdissected formalin-fixed paraffin-embedded tumour tissue from 86 patients treated with gefitinib. Exons 18, 19 and 21 were amplified and subjected to direct sequencing. Eleven (13%) patients harboured the classical exon's 18, 19 and 21 mutations, while 14 (16%) had ‘other' variants. There was a significantly higher percentage of ‘never-smoker' patients with ‘classical' EGFR mutations (P=0.002). Among patients with ‘classical' mutations 3 patients achieved PR and 7 SD, while in the ‘other' mutations group 10 patients had SD as best response. In the wild-type group, there were 3 patients with PR and 25 with SD. Median TTP was 16, 64 (P=0.002) and 21 weeks and median survival was 36, 78 and 67 weeks for patients with wild-type, ‘classical' and ‘other' EGFR mutations, respectively. The clinical relevance of ‘other' EGFR mutation variants remains uncertain and requires further assessment in a prospective study

    Time-resolved single-crystal X-ray crystallography

    Get PDF
    In this chapter the development of time-resolved crystallography is traced from its beginnings more than 30 years ago. The importance of being able to “watch” chemical processes as they occur rather than just being limited to three-dimensional pictures of the reactant and final product is emphasised, and time-resolved crystallography provides the opportunity to bring the dimension of time into the crystallographic experiment. The technique has evolved in time with developments in technology: synchrotron radiation, cryoscopic techniques, tuneable lasers, increased computing power and vastly improved X-ray detectors. The shorter the lifetime of the species being studied, the more complex is the experiment. The chapter focusses on the results of solid-state reactions that are activated by light, since this process does not require the addition of a reagent to the crystalline material and the single-crystalline nature of the solid may be preserved. Because of this photoactivation, time-resolved crystallography is often described as “photocrystallography”. The initial photocrystallographic studies were carried out on molecular complexes that either underwent irreversible photoactivated processes where the conversion took hours or days. Structural snapshots were taken during the process. Materials that achieved a metastable state under photoactivation and the excited (metastable) state had a long enough lifetime for the data from the crystal to be collected and the structure solved. For systems with shorter lifetimes, the first time-resolved results were obtained for macromolecular structures, where pulsed lasers were used to pump up the short lifetime excited state species and their structures were probed by using synchronised X-ray pulses from a high-intensity source. Developments in molecular crystallography soon followed, initially with monochromatic X-ray radiation, and pump-probe techniques were used to establish the structures of photoactivated molecules with lifetimes in the micro- to millisecond range. For molecules with even shorter lifetimes in the sub-microsecond range, Laue diffraction methods (rather than using monochromatic radiation) were employed to speed up the data collections and reduce crystal damage. Future developments in time-resolved crystallography are likely to involve the use of XFELs to complete “single-shot” time-resolved diffraction studies that are already proving successful in the macromolecular crystallographic field.</p

    Minimally invasive surgery and cancer: controversies part 1

    Get PDF
    Perhaps there is no more important issue in the care of surgical patients than the appropriate use of minimally invasive surgery (MIS) for patients with cancer. Important advances in surgical technique have an impact on early perioperative morbidity, length of hospital stay, pain management, and quality of life issues, as clearly proved with MIS. However, for oncology patients, historically, the most important clinical questions have been answered in the context of prospective randomized trials. Important considerations for MIS and cancer have been addressed, such as what are the important immunologic consequences of MIS versus open surgery and what is the role of laparoscopy in the staging of gastrointestinal cancers? This review article discusses many of the key controversies in the minimally invasive treatment of cancer using the pro–con debate format
    corecore