13 research outputs found
HH 222: A Giant Herbig-Haro Flow from the Quadruple System V380 Ori
keywords: Herbig-Haro objects, ISM: individual objects: HH 222, ISM: jets and outflows, proper motions, stars: individual: V380 Ori, stars: pre-main sequence eid: 118 adsurl: http://adsabs.harvard.edu/abs/2013AJ....146..118R adsnote: Provided by the SAO/NASA Astrophysics Data SystemarticleHH 222 is a giant shocked region in the L1641 cloud, and is popularly known as the Orion Streamers or "the waterfall" on account of its unusual structure. At the center of these streamers are two infrared sources coincident with a nonthermal radio jet aligned along the principal streamer. The unique morphology of HH 222 has long been associated with this radio jet. However, new infrared images show that the two sources are distant elliptical galaxies, indicating that the radio jet is merely an improbable line-of-sight coincidence. Accurate proper motion measurements of HH 222 reveal that the shock structure is a giant bow shock moving directly away from the well-known, very young, Herbig Be star V380 Ori. The already known Herbig-Haro object HH 35 forms part of this flow. A new Herbig-Haro object, HH 1041, is found precisely in the opposite direction of HH 222 and is likely to form part of a counterflow. The total projected extent of this HH complex is 5.3 pc, making it among the largest HH flows known. A second outflow episode from V380 Ori is identified as a pair of HH objects, HH 1031 to the northwest and the already known HH 130 to the southeast, along an axis that deviates from that of HH 222/HH 1041 by only 3fdg7. V380 Ori is a hierarchical quadruple system, including a faint companion of spectral type M5 or M6, which at an age of ~1 Myr corresponds to an object straddling the stellar-to-brown dwarf boundary. We suggest that the HH 222 giant bow shock is a direct result of the dynamical interactions that led to the conversion from an initial non-hierarchical multiple system into a hierarchical configuration. This event occurred no more than 28,000 yr ago, as derived from the proper motions of the HH 222 giant bow shock.Association of Universities for Research in Astronomy, IncNational Science FoundationNational Aeronautics and Space Administration through the NASA Astrobiology Institut
Early formation of carbon monoxide in the Centaurus A supernova SN 2016adj
We present near-infrared spectroscopy of the NGC 5128 supernova SN 2016adj in the first 2 months following discovery. We report the detection of first overtone carbon monoxide emission at ∼58.2 d after discovery, one of the earliest detections of CO in an erupting supernova. We model the CO emission to derive the CO mass, temperature and velocity, assuming both pure 12CO and a composition that includes 13CO; the case for the latter is the isotopic analyses of meteoritic grains, which suggest that core collapse supernovae can synthesise significant amounts of 13C. Our models show that, while the CO data are adequately explained by pure 12CO, they do not preclude the presence of 13CO, to a limit of 12C/13C>3, the first constraint on the 12C/13C ratio determined from near-infrared observations. We estimate the reddening to the object, and the effective temperature from the energy distribution at outburst. We discuss whether the ejecta of SN 2016adj may be carbon-rich, what the infrared data tell us about the classification of this supernova, and what implications the early formation of CO in supernovae may have for CO formation in supernovae in general
A Triple Protostar System Formed via Fragmentation of a Gravitationally Unstable Disk
Binary and multiple star systems are a frequent outcome of the star formation
process, and as a result, almost half of all sun-like stars have at least one
companion star. Theoretical studies indicate that there are two main pathways
that can operate concurrently to form binary/multiple star systems: large scale
fragmentation of turbulent gas cores and filaments or smaller scale
fragmentation of a massive protostellar disk due to gravitational instability.
Observational evidence for turbulent fragmentation on scales of 1000~AU has
recently emerged. Previous evidence for disk fragmentation was limited to
inferences based on the separations of more-evolved pre-main sequence and
protostellar multiple systems. The triple protostar system L1448 IRS3B is an
ideal candidate to search for evidence of disk fragmentation. L1448 IRS3B is in
an early phase of the star formation process, likely less than 150,000 years in
age, and all protostars in the system are separated by 200~AU. Here we
report observations of dust and molecular gas emission that reveal a disk with
spiral structure surrounding the three protostars. Two protostars near the
center of the disk are separated by 61 AU, and a tertiary protostar is
coincident with a spiral arm in the outer disk at a 183 AU separation. The
inferred mass of the central pair of protostellar objects is 1 M,
while the disk surrounding the three protostars has a total mass of 0.30
M_{\sun}. The tertiary protostar itself has a minimum mass of 0.085
M. We demonstrate that the disk around L1448 IRS3B appears susceptible
to disk fragmentation at radii between 150~AU and 320~AU, overlapping with the
location of the tertiary protostar. This is consistent with models for a
protostellar disk that has recently undergone gravitational instability,
spawning one or two companion stars.Comment: Published in Nature on Oct. 27th. 24 pages, 8 figure
Sheep (Ovis aries) T cell receptor alpha (TRA) and delta (TRD) genes and genomic organization of the TRA/TRD locus
Genomic and expression analyses of Tursiops truncatus T cell receptor gamma (TRG) and alpha/delta (TRA/TRD) loci reveal a similar basic public γδ repertoire in dolphin and human
Bovine cryptosporidiosis: impact, host-parasite interaction and control strategies
International audienceAbstractGastrointestinal disease caused by the apicomplexan parasite Cryptosporidium parvum is one of the most important diseases of young ruminant livestock, particularly neonatal calves. Infected animals may suffer from profuse watery diarrhoea, dehydration and in severe cases death can occur. At present, effective therapeutic and preventative measures are not available and a better understanding of the host–pathogen interactions is required. Cryptosporidium parvum is also an important zoonotic pathogen causing severe disease in people, with young children being particularly vulnerable. Our knowledge of the immune responses induced by Cryptosporidium parasites in clinically relevant hosts is very limited. This review discusses the impact of bovine cryptosporidiosis and describes how a thorough understanding of the host–pathogen interactions may help to identify novel prevention and control strategies
HH 222: A Giant Herbig-Haro Flow from the Quadruple System V380 Ori
HH 222 is a giant shocked region in the L1641 cloud, and is popularly known as the Orion Streamers or "the waterfall" on account of its unusual structure. At the center of these streamers are two infrared sources coincident with a nonthermal radio jet aligned along the principal streamer. The unique morphology of HH 222 has long been associated with this radio jet. However, new infrared images show that the two sources are distant elliptical galaxies, indicating that the radio jet is merely an improbable line-of-sight coincidence. Accurate proper motion measurements of HH 222 reveal that the shock structure is a giant bow shock moving directly away from the well-known, very young, Herbig Be star V380 Ori. The already known Herbig-Haro object HH 35 forms part of this flow. A new Herbig-Haro object, HH 1041, is found precisely in the opposite direction of HH 222 and is likely to form part of a counterflow. The total projected extent of this HH complex is 5.3 pc, making it among the largest HH flows known. A second outflow episode from V380 Ori is identified as a pair of HH objects, HH 1031 to the northwest and the already known HH 130 to the southeast, along an axis that deviates from that of HH 222/HH 1041 by only 3fdg7. V380 Ori is a hierarchical quadruple system, including a faint companion of spectral type M5 or M6, which at an age of ~1 Myr corresponds to an object straddling the stellar-to-brown dwarf boundary. We suggest that the HH 222 giant bow shock is a direct result of the dynamical interactions that led to the conversion from an initial non-hierarchical multiple system into a hierarchical configuration. This event occurred no more than 28,000 yr ago, as derived from the proper motions of the HH 222 giant bow shock
Twenty-three high-redshift supernovae from the Institute for Astronomy Deep Survey
We present photometric and spectroscopic observations of 23 high-redshift supernovae (SNe) spanning a range of z = 0.34-1.03, nine of which are unambiguously classified as Type Ia. These SNe were discovered during the IfA Deep Survey, which began in 2001 September and observed a total of 2.5 deg(2) to a depth of approximately m approximate to 25-26 in RIZ over 9-17 visits, typically every 1-3 weeks for nearly 5 months, with additional observations continuing until 2002 April. We give a brief description of the survey motivations, observational strategy, and reduction process. This sample of 23 high-redshift SNe includes 15 at z greater than or equal to 0.7, doubling the published number of objects at these redshifts, and indicates that the evidence for acceleration of the universe is not due to a systematic effect proportional to redshift. In combination with the recent compilation of Tonry et al. (2003), we calculate cosmological parameter density contours that are consistent with the flat universe indicated by the cosmic microwave background (Spergel et al. 2003). Adopting the constraint that Omega(total) = 1.0, we obtain best-fit values of (Omega(m), Omega(Lambda)) = (0.33, 0.67) using 22 SNe from this survey augmented by the literature compilation. We show that using the empty-beam model for gravitational lensing does not eliminate the need for Omega(Lambda) > 0. Experience from this survey indicates great potential for similar large-scale surveys while also revealing the limitations of performing surveys for z > 1 SNe from the ground
