3,460 research outputs found

    Mutual information rate and bounds for it

    Get PDF
    The amount of information exchanged per unit of time between two nodes in a dynamical network or between two data sets is a powerful concept for analysing complex systems. This quantity, known as the mutual information rate (MIR), is calculated from the mutual information, which is rigorously defined only for random systems. Moreover, the definition of mutual information is based on probabilities of significant events. This work offers a simple alternative way to calculate the MIR in dynamical (deterministic) networks or between two data sets (not fully deterministic), and to calculate its upper and lower bounds without having to calculate probabilities, but rather in terms of well known and well defined quantities in dynamical systems. As possible applications of our bounds, we study the relationship between synchronisation and the exchange of information in a system of two coupled maps and in experimental networks of coupled oscillators

    Supersymmetric Higgs Yukawa Couplings to Bottom Quarks at next-to-next-to-leading Order

    Full text link
    The effective bottom Yukawa couplings are analyzed for the minimal supersymmetric extension of the Standard Model at two-loop accuracy within SUSY-QCD. They include the resummation of the dominant corrections for large values of tg(beta). In particular the two-loop SUSY-QCD corrections to the leading SUSY-QCD and top-induced SUSY-electroweak contributions are addressed. The residual theoretical uncertainties range at the per-cent level.Comment: 25 pages, 9 figures, added comments and references, typos corrected, results unchanged, published versio

    LHC Discovery Potential for Non-Standard Higgs Bosons in the 3b Channel

    Get PDF
    In a variety of well motivated models, such as two Higgs Doublet Models (2HDMs) and the Minimal Supersymmetric Standard Model (MSSM), there are neutral Higgs bosons that have significantly enhanced couplings to b-quarks and tau leptons in comparison to those of the SM Higgs. These so called non-standard Higgs bosons could be copiously produced at the LHC in association with b quarks, and subsequently decay into b-quark pairs. However, this production channel suffers from large irreducible QCD backgrounds. We propose a new search strategy for non-standard neutral Higgs bosons at the 7 TeV LHC in the 3b's final state topology. We perform a simulation of the signal and backgrounds, using state of the art tools and methods for different sets of selection cuts, and conclude that neutral Higgs bosons with couplings to b-quarks of about 0.3 or larger, and masses up to 400 GeV, could be seen with a luminosity of 30 fb^{-1}. In the case of the MSSM we also discuss the complementarity between the 3b channel and the inclusive tau pair channel in exploring the supersymmetric parameter space.Comment: 14 pages, 3 figures, 4 tables, references added, published versio

    Higgs boson enhancement effects on squark-pair production at the LHC

    Full text link
    We study the Higgs boson effects on third-generation squark-pair production in proton-proton collision at the CERN Large Hadron Collider (LHC), including \Stop \Stop^*, \Stop\Sbot^*, and \Sbot \Sbot^*. We found that substantial enhancement can be obtained through s-channel exchanges of Higgs bosons at large tanβ\tan\beta, at which the enhancement mainly comes from bbˉb\bar b, bcˉb\bar c, and cbˉc\bar b initial states. We compute the complete set of electroweak (EW) contributions to all production channels. This completes previous computations in the literature. We found that the EW contributions can be significant and can reach up to 25% in more general scenarios and at the resonance of the heavy Higgs boson. The size of Higgs enhancement is comparable or even higher than the PDF uncertainties and so must be included in any reliable analysis. A full analytical computation of all the EW contributions is presented.Comment: 23 pages, 7 figures, 1 tabl

    Variants within TSC2 exons 25 and 31 are very unlikely to cause clinically diagnosable tuberous sclerosis

    Get PDF
    Inactivating mutations in TSC1 and TSC2 cause tuberous sclerosis complex (TSC). The 2012 international consensus meeting on TSC diagnosis and management agreed that the identification of a pathogenic TSC1 or TSC2 variant establishes a diagnosis of TSC, even in the absence of clinical signs. However, exons 25 and 31 of TSC2 are subject to alternative splicing. No variants causing clinically diagnosed TSC have been reported in these exons raising the possibility that such variants would not cause TSC. We present truncating and in-frame variants in exons 25 and 31 in three individuals unlikely to fulfil TSC diagnostic criteria and examine the importance of these exons in TSC using different approaches. Amino acid conservation analysis suggests significantly less conservation in these exons compared to the majority of TSC2 exons, and TSC2 expression data demonstrates that the majority of TSC2 transcripts lack exons 25 and/or 31 in many human adult tissues. In vitro assay of both exons shows that neither exon is essential for TSC complex function. Our evidence suggests that variants in TSC2 exons 25 or 31 are very unlikely to cause classical TSC, although a role for these exons in tissue/stage specific development cannot be excluded

    Excluding Electroweak Baryogenesis in the MSSM

    Full text link
    In the context of the MSSM the Light Stop Scenario (LSS) is the only region of parameter space that allows for successful Electroweak Baryogenesis (EWBG). This possibility is very phenomenologically attractive, since it allows for the direct production of light stops and could be tested at the LHC. The ATLAS and CMS experiments have recently supplied tantalizing hints for a Higgs boson with a mass of ~ 125 GeV. This Higgs mass severely restricts the parameter space of the LSS, and we discuss the specific predictions made for EWBG in the MSSM. Combining data from all the available ATLAS and CMS Higgs searches reveals a tension with the predictions of EWBG even at this early stage. This allows us to exclude EWBG in the MSSM at greater than (90) 95% confidence level in the (non-)decoupling limit, by examining correlations between different Higgs decay channels. We also examine the exclusion without the assumption of a ~ 125 GeV Higgs. The Higgs searches are still highly constraining, excluding the entire EWBG parameter space at greater than 90% CL except for a small window of m_h ~ 117 - 119 GeV.Comment: 24 Pages, 4 Figures (v3: fixed typos, minor corrections, added references

    Hadronic production of bottom-squark pairs with electroweak contributions

    Get PDF
    We present the complete computation of the tree-level and the next-to-leading order electroweak contributions to bottom-squark pair production at the LHC. The computation is performed within the minimal supersymmetric extension of the Standard Model. We discuss the numerical impact of these contributions in several supersymmetric scenarios.Comment: 33 pages, v2: preprint numbers correcte

    Testing supersymmetry at the LHC through gluon-fusion production of a slepton pair

    Full text link
    Renormalizable quartic couplings among new particles are typical of supersymmetric models. Their detection could provide a test for supersymmetry, discriminating it from other extensions of the Standard Model. Quartic couplings among squarks and sleptons, together with the SU(3) gauge couplings for squarks, allow a new realization of the gluon-fusion mechanism for pair-production of sleptons at the one-loop level. The corresponding production cross section, however, is at most of O(1){\cal O}(1) fb for slepton and squark masses of O(100){\cal O}(100) GeV. We then extend our investigation to the gluon-fusion production of sleptons through the exchange of Higgs bosons. The cross section is even smaller, of O(0.1){\cal O}(0.1) fb, if the exchanged Higgs boson is considerably below the slepton-pair threshold, but it is enhanced when it is resonant. It can reach O(10){\cal O}(10) fb for the production of sleptons of same-chirality, exceeding these values for τ~\widetilde{\tau}'s of opposite-chirality, even when chirality-mixing terms in the squark sector are vanishing. The cross section can be further enhanced if these mixing terms are nonnegligible, providing a potentially interesting probe of the Higgs sector, in particular of parameters such as AA, μ\mu, and tanβ\tan\beta.Comment: 28 pages, 11 figure

    Reversal of Gender in Ancient Egyptian Mythology: Discovering the Secrets of Androgyny

    Get PDF
    Historically, the Egyptian view of life after death has been examined based on its spiritual and religious merit. There are other aspects of Egyptian culture, however, that lead us to believe that gender and sexual androgyny played a massive role in their religious practices. Ancient creation myths, such as the stories of Atum’s phallic creation and the separation of Nut and Geb, hint towards a more sexually ambiguous Egypt, created by gender switching gods. In addition, the astronomy of the time pointed towards the center of the universe as being both a masculine and feminine entity; this is embodied in the constellation Ursa Major, whose shape is that of a bull’s foreleg. Perhaps the most outstanding evidence of Egyptian sexuality, however, is their belief of gender reversal after death. Based on the outside of ancient sarcophagi, the common conviction was that a woman was transfigured into a man just before she entered the world of the dead. Therefore, the reversal of gender was a facet of Egyptian life, the center of their physical universe, and the epitome of death itself
    corecore