4,759 research outputs found

    Complete resummation of chirally-enhanced loop-effects in the MSSM with non-minimal sources of flavor-violation

    Get PDF
    In this article we present the complete resummation of the leading chirally-enhanced corrections stemming from gluino-squark, chargino-sfermion and neutralino-sfermion loops in the MSSM with non-minimal sources of flavor-violation. We compute the finite renormalization of fermion masses and the CKM matrix induced by chirality-flipping self-energies. In the decoupling limit Msusy>>v, which is an excellent approximation to the full theory, we give analytic results for the effective gaugino(higgsino)-fermion-sfermion and the Higgs-fermion-fermion vertices. Using these vertices as effective Feynman rules, all leading chirally-enhanced corrections can consistently be included into perturbative calculations of Feynman amplitudes. We also give a generalized parametrization for the bare CKM matrix which extends the classic Wolfenstein parametrization to the case of complex parameters lambda and A.Comment: 31 pages, 3 figures; typos correcte

    A 125 GeV SM-like Higgs in the MSSM and the γγ\gamma \gamma rate

    Get PDF
    We consider the possibility of a Standard Model (SM)-like Higgs in the context of the Minimal Supersymmetric Standard Model (MSSM), with a mass of about 125 GeV and with a production times decay rate into two photons which is similar or somewhat larger than the SM one. The relatively large value of the SM-like Higgs mass demands stops in the several hundred GeV mass range with somewhat large mixing, or a large hierarchy between the two stop masses in the case that one of the two stops is light. We find that, in general, if the heaviest stop mass is smaller than a few TeV, the rate of gluon fusion production of Higgs bosons decaying into two photons tends to be somewhat suppressed with respect to the SM one in this region of parameters. However, we show that an enhancement of the photon decay rate may be obtained for light third generation sleptons with large mixing, which can be naturally obtained for large values of tanβ\tan\beta and sizable values of the Higgsino mass parameter.Comment: 14 pages, 4 figures. Corrected small typos and added reference

    Breast cancer histologic grading using digital microscopy: concordance and outcome association

    Get PDF
    Aims: Virtual microscopy utilising digital whole slide imaging (WSI) is increasingly used in breast pathology. Histologic grade is one of the strongest prognostic factors in breast cancer (BC). This study aims at investigating the agreement between BC grading using traditional light microscopy (LM) and digital whole slide imaging (WSI) with consideration of reproducibility and impact on outcome prediction. Methods: A large (n=1675) well-characterised cohort of BC originally graded by LM was re-graded using WSI. Two separate virtual-based grading sessions (V1 and V2) were performed with a three months washout period. Outcome was assessed using breast cancer specific and distant metastasis free survival. Results: The concordance between LM grading and WSI was strong (LM/SWI Cramer’s V: V1=0.576, and V2=0.579). The agreement regarding grade components was as follows: Tubule formation=0.538, Pleomorphism=0.422 and Mitosis=0.514. Greatest discordance was observed between adjacent grades whereas high/low grade discordance was uncommon (1.5%). The intra-observer agreement for the two WSI sessions was substantial for grade (V1/V2 Cramer’s V=0.676; kappa=0.648) and grade components (Cramer’s V T=0.628, P=0.573 and M=0.580). Grading using both platforms showed strong association with outcome (All p-value <0.001). Although mitotic scores assessed using both platforms were strongly associated with outcome, WSI tends to underestimate mitotic counts. Conclusions: Virtual microscopy is a reliable and reproducible method for assessing BC histologic grade. Regardless of the observer or assessment platform, histologic grade is a significant predictor of outcome. Continuing advances in imaging technology could potentially provide improved performance of WSI BC grading and in particular mitotic count assessment

    Phenomenology and Cosmology of an Electroweak Pseudo-Dilaton and Electroweak Baryons

    Get PDF
    In many strongly-interacting models of electroweak symmetry breaking the lowest-lying observable particle is a pseudo-Goldstone boson of approximate scale symmetry, the pseudo-dilaton. Its interactions with Standard Model particles can be described using a low-energy effective nonlinear chiral Lagrangian supplemented by terms that restore approximate scale symmetry, yielding couplings of the pseudo-dilaton that differ from those of a Standard Model Higgs boson by fixed factors. We review the experimental constraints on such a pseudo-dilaton in light of new data from the LHC and elsewhere. The effective nonlinear chiral Lagrangian has Skyrmion solutions that may be identified with the `electroweak baryons' of the underlying strongly-interacting theory, whose nature may be revealed by the properties of the Skyrmions. We discuss the finite-temperature electroweak phase transition in the low-energy effective theory, finding that the possibility of a first-order electroweak phase transition is resurrected. We discuss the evolution of the Universe during this transition and derive an order-of-magnitude lower limit on the abundance of electroweak baryons in the absence of a cosmological asymmetry, which suggests that such an asymmetry would be necessary if the electroweak baryons are to provide the cosmological density of dark matter. We revisit estimates of the corresponding spin-independent dark matter scattering cross section, with a view to direct detection experiments.Comment: 34 pages, 4 figures, additional references adde

    Some remarks on a new exotic spacetime for time travel by free fall

    Full text link
    This work is essentially a review of a new spacetime model with closed causal curves, recently presented in another paper (Class. Quantum Grav. \textbf{35}(16) (2018), 165003). The spacetime at issue is topologically trivial, free of curvature singularities, and even time and space orientable. Besides summarizing previous results on causal geodesics, tidal accelerations and violations of the energy conditions, here redshift/blueshift effects and the Hawking-Ellis classification of the stress-energy tensor are examined.Comment: 17 pages, 9 figures. Submitted as a contribution to the proceedings of "DOMOSCHOOL - International Alpine School of Mathematics and Physics, Domodossola 2018". Possible text overlaps with my previous work arXiv:1803.08214, of which this is essentially a review. Additional results concerning redshift/blueshift effects and the classification of the stress-energy tensor are presented her

    Search for the Elusive Higgs Boson Using Jet Structure at LHC

    Full text link
    We consider the production of a light non-standard model Higgs boson of order 100~\GEV with an associated WW boson at CERN Large Hadron Collider. We focus on an interesting scenario that, the Higgs boson decays predominately into two light scalars χ\chi with mass of few GeV which sequently decay into four gluons, i.e. h2χ4gh\to 2\chi \to 4g. Since χ\chi is much lighter than the Higgs boson, it will be highly boosted and its decay products, the two gluons, will move close to each other, resulting in a single jet for χ\chi decay in the detector. By using electromagnetic calorimeter-based and jet substructure analyses, we show in two cases of different χ\chi masses that it is quite promising to extract the signal of Higgs boson out of large QCD background.Comment: 20 pages, 7 figure

    Flavour physics constraints in the BMSSM

    Full text link
    We study the implications of the presence of the two leading-order, non-renormalizable operators in the Higgs sector of the MSSM to flavour physics observables. We identify the constraints of flavour physics on the parameters of the BMSSM when we: a) focus on a region of parameters for which electroweak baryogenesis is feasible, b) use a CMSSM-like parametrization, and c) consider the case of a generic NUHM-type model. We find significant differences as compared to the standard MSSM case.Comment: 22 pages, 7 figure

    Neutralino versus axion/axino cold dark matter in the 19 parameter SUGRA model

    Full text link
    We calculate the relic abundance of thermally produced neutralino cold dark matter in the general 19 parameter supergravity (SUGRA-19) model. A scan over GUT scale parameters reveals that models with a bino-like neutralino typically give rise to a dark matter density \Omega_{\tz_1}h^2\sim 1-1000, i.e. between 1 and 4 orders of magnitude higher than the measured value. Models with higgsino or wino cold dark matter can yield the correct relic density, but mainly for neutralino masses around 700-1300 GeV. Models with mixed bino-wino or bino-higgsino CDM, or models with dominant co-annihilation or A-resonance annihilation can yield the correct abundance, but such cases are extremely hard to generate using a general scan over GUT scale parameters; this is indicative of high fine-tuning of the relic abundance in these cases. Requiring that m_{\tz_1}\alt 500 GeV (as a rough naturalness requirement) gives rise to a minimal probably dip in parameter space at the measured CDM abundance. For comparison, we also scan over mSUGRA space with four free parameters. Finally, we investigate the Peccei-Quinn augmented MSSM with mixed axion/axino cold dark matter. In this case, the relic abundance agrees more naturally with the measured value. In light of our cumulative results, we conclude that future axion searches should probe much more broadly in axion mass, and deeper into the axion coupling.Comment: 23 pages including 17 .eps figure

    Higgs boson enhancement effects on squark-pair production at the LHC

    Full text link
    We study the Higgs boson effects on third-generation squark-pair production in proton-proton collision at the CERN Large Hadron Collider (LHC), including \Stop \Stop^*, \Stop\Sbot^*, and \Sbot \Sbot^*. We found that substantial enhancement can be obtained through s-channel exchanges of Higgs bosons at large tanβ\tan\beta, at which the enhancement mainly comes from bbˉb\bar b, bcˉb\bar c, and cbˉc\bar b initial states. We compute the complete set of electroweak (EW) contributions to all production channels. This completes previous computations in the literature. We found that the EW contributions can be significant and can reach up to 25% in more general scenarios and at the resonance of the heavy Higgs boson. The size of Higgs enhancement is comparable or even higher than the PDF uncertainties and so must be included in any reliable analysis. A full analytical computation of all the EW contributions is presented.Comment: 23 pages, 7 figures, 1 tabl
    corecore