133 research outputs found
Clinicopathological Profile and Surgical Treatment of Abdominal Tuberculosis: A Single Centre Experience in Northwestern Tanzania.
Abdominal tuberculosis continues to be a major public health problem worldwide and poses diagnostic and therapeutic challenges to general surgeons practicing in resource-limited countries. This study was conducted to describe the clinicopathological profile and outcome of surgical treatment of abdominal tuberculosis in our setting and compare with what is described in literature. A prospective descriptive study of patients who presented with abdominal tuberculosis was conducted at Bugando Medical Centre (BMC) in northwestern Tanzania from January 2006 to February 2012. Ethical approval to conduct the study was obtained from relevant authorities. Statistical data analysis was performed using SPSS version 17.0. Out of 256 patients enrolled in the study, males outnumbered females. The median age was 28 years (range = 16-68 years). The majority of patients (77.3%) had primary abdominal tuberculosis. A total of 127 (49.6%) patients presented with intestinal obstruction, 106 (41.4%) with peritonitis, 17 (6.6%) with abdominal masses and 6 (2.3%) patients with multiple fistulae in ano. Forty-eight (18.8%) patients were HIV positive. A total of 212 (82.8%) patients underwent surgical treatment for abdominal tuberculosis. Bands /adhesions (58.5%) were the most common operative findings. Ileo-caecal region was the most common bowel involved in 122 (57.5%) patients. Release of adhesions and bands was the most frequent surgical procedure performed in 58.5% of cases. Complication and mortality rates were 29.7% and 18.8% respectively. The overall median length of hospital stay was 32 days and was significantly longer in patients with complications (p < 0.001). Advanced age (age ≥ 65 years), co-morbid illness, late presentation, HIV positivity and CD4+ count < 200 cells/μl were statistically significantly associated with mortality (p < 0.0001). The follow up of patients were generally poor as only 37.5% of patients were available for follow up at twelve months after discharge. Abdominal tuberculosis constitutes a major public health problem in our environment and presents a diagnostic challenge requiring a high index of clinical suspicion. Early diagnosis, early anti-tuberculous therapy and surgical treatment of the associated complications are essential for survival
Expression of caspase-3, p53 and Bcl-2 in generalized aggressive periodontitis
BACKGROUND: Apoptosis, or programmed cell death is a form of physiological cell death. It is increased or decreased in the presence of infection, inflammation or tissue remodelling. Previous studies suggest that apoptosis is involved in the pathogenesis of inflammatory periodontal disease. The aim of the present study was to investigate the clinical features and known indicators of apoptosis (p53, Bcl-2, Caspase-3) in patients with generalized aggressive periodontitis (GAP) METHODS: Eight patients with GAP, who had sites with probing depths (PD) > 5 mm, and 10 periodontally-healthy persons were included in the study. Clinical examinations and PD were performed, and the plaque index and gingival index were recorded. Gingival tissues biopsies were obtained from active site of each patient and from healthy individuals. The expression of caspase-3, Bcl-2, and p53 was evaluated by immunohistochemistry RESULTS: There were no significant differences between GAP and control group with respect to levels of caspase-3 and p53 expression (P > 0.05). Contrary, the frequency of grade 3 expression of Bcl-2 was higher in GAP group than the control group. CONCLUSION: The higher frequency of Bcl-2 expression in GAP group indicates and delayed apoptosis can lead to increasing resident inflammatory cells in periodontal tissues and resulting in progressive periodontal destruction
Analysis of proliferative activity in oral gingival epithelium in immunosuppressive medication induced gingival overgrowth
BACKGROUND: Drug-induced gingival overgrowth is a frequent adverse effect associated principally with administration of the immunosuppressive drug cyclosporin A and also certain antiepileptic and antihypertensive drugs. It is characterized by a marked increase in the thickness of the epithelial layer and accumulation of excessive amounts of connective tissue. The mechanism by which the drugs cause gingival overgrowth is not yet understood. The purpose of this study was to compare proliferative activity of normal human gingiva and in cyclosporine A-induced gingival overgrowth. METHODS: Gingival samples were collected from 12 generally healthy individuals and 22 Cyclosporin A-medicated renal transplant recipients. Expression of proliferating cell nuclear antigen was evaluated in formalin-fixed, paraffin-embedded gingival samples using an immunoperoxidase technique and a monoclonal antibody for this antigen. RESULTS: There were differences between the Cyclosporin A group and control group in regard to proliferating cell nuclear antigen and epithelial thickness. In addition, the degree of stromal inflammation was higher in the Cyclosporin A group when compared with the control group. CONCLUSION: The results suggest that the increased epithelial thickness observed in Cyclosporin A-induced gingival overgrowth is associated with increased proliferative activity in keratinocytes
Precision medicine driven by cancer systems biology
Molecular insights from genome and systems biology are influencing how cancer is diagnosed and treated. We critically evaluate big data challenges in precision medicine. The melanoma research community has identified distinct subtypes involving chronic sun-induced damage and the mitogen-activated protein kinase driver pathway. In addition, despite low mutation burden, non-genomic mitogen-activated protein kinase melanoma drivers are found in membrane receptors, metabolism, or epigenetic signaling with the ability to bypass central mitogen-activated protein kinase molecules and activating a similar program of mitogenic effectors. Mutation hotspots, structural modeling, UV signature, and genomic as well as non-genomic mechanisms of disease initiation and progression are taken into consideration to identify resistance mutations and novel drug targets. A comprehensive precision medicine profile of a malignant melanoma patient illustrates future rational drug targeting strategies. Network analysis emphasizes an important role of epigenetic and metabolic master regulators in oncogenesis. Co-occurrence of driver mutations in signaling, metabolic, and epigenetic factors highlights how cumulative alterations of our genomes and epigenomes progressively lead to uncontrolled cell proliferation. Precision insights have the ability to identify independent molecular pathways suitable for drug targeting. Synergistic treatment combinations of orthogonal modalities including immunotherapy, mitogen-activated protein kinase inhibitors, epigenetic inhibitors, and metabolic inhibitors have the potential to overcome immune evasion, side effects, and drug resistance
Review of genitourinary tuberculosis with focus on end-stage renal disease
Tuberculosis (TB) is a current public health problem, remaining the most common worldwide cause of mortality from infectious disease. Recent studies indicate that genitourinary TB is the third most common form of extra-pulmonary disease. The diagnosis of renal TB can be hypothesized in a non-specific bacterial cystitis associated with a therapeutic failure or a urinalysis with a persistent leukocyturia in the absence of bacteriuria. We report on the case of a 33-year-old man who presented on admission end stage renal disease (ESRD) secondary to renal TB and a past history of pulmonary TB with important radiologic findings. The diagnosis was based on clinical findings despite all cultures being negative. Empiric treatment with tuberculostatic drugs was started and the patient became stable. He was discharged with no symptom, but without renal function recovery. He is on maintenance hemodialysis three times a week. TB is an important cause of kidney disease and can lead to irreversible renal function loss
Blastocystis subtypes in irritable bowel syndrome and inflammatory bowel disease in Ankara, Turkey
Iron Behaving Badly: Inappropriate Iron Chelation as a Major Contributor to the Aetiology of Vascular and Other Progressive Inflammatory and Degenerative Diseases
The production of peroxide and superoxide is an inevitable consequence of
aerobic metabolism, and while these particular "reactive oxygen species" (ROSs)
can exhibit a number of biological effects, they are not of themselves
excessively reactive and thus they are not especially damaging at physiological
concentrations. However, their reactions with poorly liganded iron species can
lead to the catalytic production of the very reactive and dangerous hydroxyl
radical, which is exceptionally damaging, and a major cause of chronic
inflammation. We review the considerable and wide-ranging evidence for the
involvement of this combination of (su)peroxide and poorly liganded iron in a
large number of physiological and indeed pathological processes and
inflammatory disorders, especially those involving the progressive degradation
of cellular and organismal performance. These diseases share a great many
similarities and thus might be considered to have a common cause (i.e.
iron-catalysed free radical and especially hydroxyl radical generation). The
studies reviewed include those focused on a series of cardiovascular, metabolic
and neurological diseases, where iron can be found at the sites of plaques and
lesions, as well as studies showing the significance of iron to aging and
longevity. The effective chelation of iron by natural or synthetic ligands is
thus of major physiological (and potentially therapeutic) importance. As
systems properties, we need to recognise that physiological observables have
multiple molecular causes, and studying them in isolation leads to inconsistent
patterns of apparent causality when it is the simultaneous combination of
multiple factors that is responsible. This explains, for instance, the
decidedly mixed effects of antioxidants that have been observed, etc...Comment: 159 pages, including 9 Figs and 2184 reference
Abdominal tuberculosis: a radiological review with emphasis on computed tomography and magnetic resonance imaging findings
Meat and Nicotinamide:A Causal Role in Human Evolution, History, and Demographics
Hunting for meat was a critical step in all animal and human evolution. A key brain-trophic element in meat is vitamin B 3 /nicotinamide. The supply of meat and nicotinamide steadily increased from the Cambrian origin of animal predators ratcheting ever larger brains. This culminated in the 3-million-year evolution of Homo sapiens and our overall demographic success. We view human evolution, recent history, and agricultural and demographic transitions in the light of meat and nicotinamide intake. A biochemical and immunological switch is highlighted that affects fertility in the ‘de novo’ tryptophan-to-kynurenine-nicotinamide ‘immune tolerance’ pathway. Longevity relates to nicotinamide adenine dinucleotide consumer pathways. High meat intake correlates with moderate fertility, high intelligence, good health, and longevity with consequent population stability, whereas low meat/high cereal intake (short of starvation) correlates with high fertility, disease, and population booms and busts. Too high a meat intake and fertility falls below replacement levels. Reducing variances in meat consumption might help stabilise population growth and improve human capital
- …
