13 research outputs found
Brisk walking compared with an individualised medical fitness programme for patients with type 2 diabetes: a randomised controlled trial
AIMS/HYPOTHESIS: Structured exercise is considered a cornerstone in type 2 diabetes treatment. However, adherence to combined resistance and endurance type exercise or medical fitness intervention programmes is generally poor. Group-based brisk walking may represent an attractive alternative, but its long-term efficacy as compared with an individualised approach such as medical fitness intervention programmes is unknown. We compared the clinical benefits of a 12-month exercise intervention programme consisting of either brisk walking or a medical fitness programme in type 2 diabetes patients. METHODS: We randomised 92 type 2 diabetes patients (60 +/- 9 years old) to either three times a week of 60 min brisk walking (n = 49) or medical fitness programme (n = 43). Primary outcome was the difference in changes in HbA1c values at 12 months. Secondary outcomes were differences in changes in blood pressure, plasma lipid concentrations, insulin sensitivity, body composition, physical fitness, programme adherence rate and health-related quality of life. RESULTS: After 12 months, 18 brisk walking and 19 medical fitness participants were still actively participating. In both programmes, 50 and 25% of the dropout was attributed to overuse injuries and lack of motivation, respectively. Intention-to-treat analyses showed no important differences between brisk walking and medical fitness programme in primary or secondary outcome variables. CONCLUSIONS/INTERPRETATION: The prescription of group-based brisk walking represents an equally effective intervention to modulate glycaemic control and cardiovascular risk profile in type 2 diabetes patients when compared with more individualised medical fitness programmes. Future exercise intervention programmes should anticipate the high attrition rate due to overuse injuries and motivation problems
Management of an LCHADD Patient During Pregnancy and High Intensity Exercise
In this report we describe a female Long-Chain 3-Hydroxyacyl-CoA Dehydrogenase Deficiency (LCHADD) patient who suffered from severe exercise intolerance. At age 34, the patient became pregnant for the first time. After an uneventful first 32 weeks of pregnancy she developed sinus tachycardia (resting heart rate 120–134 bpm) and lactate and creatinine kinase levels increased (3.3 mmol/L and 264 U/L, respectively). Increasing MCT supplementation (dose and frequency of administration) lowered heart rate and improved biochemical parameters. At 34 weeks the heart rate rose again and it was decided to deliver the child by caesarean section. Postpartum both mother and child did well. Prior to pregnancy, she performed exercise tests with different doses of medium chain triglycerides (MCTs) to establish a safe and effective exercise program (baseline test, second test with 10 g MCTs and third test with 20 g of MCTs). In the MCT supplemented tests the maximal power output was 23% (second test) and 26% (third test) higher, while cardiac output at maximal power output was the same in all three tests (~15.8 L/min). In conclusion, this is the first report of pregnancy in an LCHADD patient, with favourable outcome for both mother and child. Moreover, in the same patient, MCT supplementation improved cardiac performance and metabolic parameters during high intensity exercise. Using impedance cardiography, we got a clear indication that this benefit was due to improved muscle energy generation at high intensity exercise, since at the same cardiac output a higher power output could be generated
Comparison of Peak Cardiopulmonary Performance Parameters on a Robotics-Assisted Tilt Table, a Cycle and a Treadmill
Robotics-assisted tilt table (RATT) technology provides body support, cyclical stepping movement and physiological loading. This technology can potentially be used to facilitate the estimation of peak cardiopulmonary performance parameters in patients who have neurological or other problems that may preclude testing on a treadmill or cycle ergometer. The aim of the study was to compare the magnitude of peak cardiopulmonary performance parameters including peak oxygen uptake (VO2peak) and peak heart rate (HRpeak) obtained from a robotics-assisted tilt table (RATT), a cycle ergometer and a treadmill. The strength of correlations between the three devices, test-retest reliability and repeatability were also assessed. Eighteen healthy subjects performed six maximal exercise tests, with two tests on each of the three exercise modalities. Data from the second tests were used for the comparative and correlation analyses. For nine subjects, test-retest reliability and repeatability of VO2peak and HRpeak were assessed. Absolute VO2peak from the RATT, the cycle ergometer and the treadmill was (mean (SD)) 2.2 (0.56), 2.8 (0.80) and 3.2 (0.87) L/min, respectively (p < 0.001). HRpeak from the RATT, the cycle ergometer and the treadmill was 168 (9.5), 179 (7.9) and 184 (6.9) beats/min, respectively (p < 0.001). VO2peak and HRpeak from the RATT vs the cycle ergometer and the RATT vs the treadmill showed strong correlations. Test-retest reliability and repeatability were high for VO2peak and HRpeak for all devices. The results demonstrate that the RATT is a valid and reliable device for exercise testing. There is potential for the RATT to be used in severely impaired subjects who cannot use the standard modalities
Influence of age, sex, body size, smoking, and β blockade on key gas exchange exercise parameters in an adult population
Reference values for cardiopulmonary exercise testing in healthy adults: a systematic review
Overall and differentiated sensory responses to cardiopulmonary exercise test in patients with cystic fibrosis: kinetics and ability to predict peak oxygen uptake
International audienc
Are heart rate methods based on ergometer cycling and level treadmill walking interchangeable?
Introduction. The heart rate (HR) method is a promising approach for evaluating oxygen uptake (V̇O2), energy demands and exercise intensities in different forms of physical activities. It would be valuable if the HR method, established on ergometer cycling, is interchangeable with other regular activities, such as level walking. This study therefore aimed to examine the interchangeability of the HR method when estimating V̇O2 for ergometer cycling and level treadmill walking in submaximal conditions. Methods. Two models of HR-V̇O2 regression equations for cycle ergometer exercise (CEE) and treadmill exercise (TE) were established with 34 active commuters. Model 1 consisted of three submaximal intensities of ergometer cycling or level walking, model 2 included also one additional workload of maximal ergometer cycling or running. The regression equations were used for estimating V̇O2 with seven individual HR values based on 25-85% of HR reserve (HRR). The V̇O2 estimations were compared between CEE and TE, within and between each model. Results. Only minor, and in most cases non-significant, average differences were observed when comparing the estimated V̇O2 levels between CEE and TE. Model 1 ranged from -0.4 to 4.8% (n.s.) between 25-85 %HRR. In model 2, the differences between 25-65 %HRR ranged from 1.3 to -2.7% (n.s.). At the two highest intensities, 75 and 85 %HRR, V̇O2 was slightly lower (3.7%, 4.4%; P < 0.05), for CEE than TE. The inclusion of maximal exercise in the HR-V̇O2 relationships reduced the individual V̇O2 variations between the two exercise modalities. Conclusion. The HR methods, based on submaximal ergometer cycling and level walking, are interchangeable for estimating mean V̇O2 levels between 25-85% of HRR. Essentially, the same applies when adding maximal exercise in the HR-V̇O2 relationships. The inter-individual V̇O2 variation between ergometer cycling and treadmill exercise is reduced when using the HR method based on both submaximal and maximal workloads.FAA
