340 research outputs found
Assessing the psychometric and ecometric properties of neighborhood scales using adolescent survey data from urban and rural Scotland
This work was supported by NHS Health Scotland and the University of St Andrews.Background: Despite the well-established need for specific measurement instruments to examine the relationship between neighborhood conditions and adolescent well-being outcomes, few studies have developed scales to measure features of the neighborhoods in which adolescents reside. Moreover, measures of neighborhood features may be operationalised differently by adolescents living in different levels of urban/rurality. This has not been addressed in previous studies. The objectives of this study were to: 1) establish instruments to measure adolescent neighborhood features at both the individual and neighborhood level, 2) assess their psychometric and ecometric properties, 3) test for invariance by urban/rurality, and 4) generate neighborhood level scores for use in further analysis. Methods: Data were from the Scottish 2010 Health Behaviour in School-aged Children Survey, which included an over-sample of rural adolescents. The survey responses of interest came from questions designed to capture different facets of the local area in which each respondent resided. Intermediate data zones were used as proxies for neighborhoods. Internal consistency was evaluated by Cronbach’s alpha. Invariance was examined using confirmatory factor analysis. Multilevel models were used to estimate ecometric properties and generate neighborhood scores. Results: Two constructs labeled neighborhood social cohesion and neighborhood disorder were identified. Adjustment was made to the originally specified model to improve model fit and measures of invariance. At the individual level, reliability was .760 for social cohesion and .765 for disorder, and between .524 and .571 for both constructs at the neighborhood level. Individuals in rural areas experienced greater neighborhood social cohesion and lower levels of neighborhood disorder compared with those in urban areas. Conclusions: The scales are appropriate for measuring neighborhood characteristics experienced by adolescents across urban and rural Scotland, and can be used in future studies of neighborhoods and health. However, trade-offs between neighborhood sample size and reliability must be considered.Publisher PDFPeer reviewe
Low-level regulatory T-cell activity is essential for functional type-2 effector immunity to expel gastrointestinal helminths
Helminth infection is frequently associated with the expansion of regulatory T cells (Tregs) and suppression of immune responses to bystander antigens. We show that infection of mice with the chronic gastrointestinal helminth Heligmosomoides polygyrus drives rapid polyclonal expansion of Foxp3(+)Helios(+)CD4(+) thymic (t)Tregs in the lamina propria and mesenteric lymph nodes while Foxp3(+)Helios(-)CD4(+) peripheral (p)Treg expand more slowly. Notably, in partially resistant BALB/c mice parasite survival positively correlates with Foxp3(+)Helios(+)CD4(+) tTreg numbers. Boosting of Foxp3(+)Helios(+)CD4(+) tTreg populations by administration of recombinant interleukin-2 (rIL-2):anti-IL-2 (IL-2C) complex increased worm persistence by diminishing type-2 responsiveness in vivo, including suppression of alternatively activated macrophage and granulomatous responses at the sites of infection. IL-2C also increased innate lymphoid cell (ILC) numbers, indicating that Treg functions dominate over ILC effects in this setting. Surprisingly, complete removal of Tregs in transgenic Foxp3-DTR mice also resulted in increased worm burdens, with "immunological chaos" evident in high levels of the pro-inflammatory cytokines IL-6 and interferon-γ. In contrast, worm clearance could be induced by anti-CD25 antibody-mediated partial depletion of early Treg, alongside increased T helper type 2 responses and without incurring pathology. These findings highlight the overarching importance of the early Treg response to infection and the non-linear association between inflammation and the prevailing Treg frequency
Revisiting the mechanism of coagulation factor XIII activation and regulation from a structure/functional perspective
The activation and regulation of coagulation Factor XIII (FXIII) protein has been the subject of active research for the past three decades. Although discrete evidence exists on various aspects of FXIII activation and regulation a combinatorial structure/functional view in this regard is lacking. In this study, we present results of a structure/function study of the functional chain of events for FXIII. Our study shows how subtle chronological submolecular changes within calcium binding sites can bring about the detailed transformation of the zymogenic FXIII to its activated form especially in the context of FXIIIA and FXIIIB subunit interactions. We demonstrate what aspects of FXIII are important for the stabilization (first calcium binding site) of its zymogenic form and the possible modes of deactivation (thrombin mediated secondary cleavage) of the activated form. Our study for the first time provides a structural outlook of the FXIIIA 2 B 2 heterotetramer assembly, its association and dissociation. The FXIIIB subunits regulatory role in the overall process has also been elaborated upon. In summary, this study provides detailed structural insight into the mechanisms of FXIII activation and regulation that can be used as a template for the development of future highly specific therapeutic inhibitors targeting FXIII in pathological conditions like thrombosis
A structurally distinct TGF-β mimic from an intestinal helminth parasite potently induces regulatory T cells.
Helminth parasites defy immune exclusion through sophisticated evasion mechanisms, including activation of host immunosuppressive regulatory T (Treg) cells. The mouse parasite Heligmosomoides polygyrus can expand the host Treg population by secreting products that activate TGF-β signalling, but the identity of the active molecule is unknown. Here we identify an H. polygyrus TGF-β mimic (Hp-TGM) that replicates the biological and functional properties of TGF-β, including binding to mammalian TGF-β receptors and inducing mouse and human Foxp3+ Treg cells. Hp-TGM has no homology with mammalian TGF-β or other members of the TGF-β family, but is a member of the complement control protein superfamily. Thus, our data indicate that through convergent evolution, the parasite has acquired a protein with cytokine-like function that is able to exploit an endogenous pathway of immunoregulation in the host
Helminth secretions induce de novo T cell Foxp3 expression and regulatory function through the TGF-β pathway
Foxp3-expressing regulatory T (T reg) cells have been implicated in parasite-driven inhibition of host immunity during chronic infection. We addressed whether parasites can directly induce T reg cells. Foxp3 expression was stimulated in naive Foxp3⁻ T cells in mice infected with the intestinal helminth Heligmosomoides polygyrus. In vitro, parasite-secreted proteins (termed H. polygyrus excretory-secretory antigen [HES]) induced de novo Foxp3 expression in fluorescence-sorted Foxp3⁻ splenocytes from Foxp3-green fluorescent protein reporter mice. HES-induced T reg cells suppressed both in vitro effector cell proliferation and in vivo allergic airway inflammation. HES ligated the transforming growth factor (TGF) β receptor and promoted Smad2/3 phosphorylation. Foxp3 induction by HES was lost in dominant-negative TGF-βRII cells and was abolished by the TGF-β signaling inhibitor SB431542. This inhibitor also reduced worm burdens in H. polygyrus-infected mice. HES induced IL-17 in the presence of IL-6 but did not promote Th1 or Th2 development under any conditions. Importantly, antibody to mammalian TGF-β did not recognize HES, whereas antisera that inhibited HES did not affect TGF-β. Foxp3 was also induced by secreted products of Teladorsagia circumcincta, a related nematode which is widespread in ruminant animals. We have therefore identified a novel pathway through which helminth parasites may stimulate T reg cells, which is likely to be a key part of the parasite's immunological relationship with the host.J.R. Grainger thanks the Wellcome Trust for studentship support through the 4-year PhD Program, H.J. McSorley, K.J. Filbey, and C.A.M. Finney thank the Medical Research Council for studentship support, E.J.D. Greenwood thanks the Wellcome Trust for an undergraduate summer studentship, and K.A. Smith, J.P. Hewitson, Y. Harcus, and R.M. Maizels thank the Wellcome Trust for Programme Grant support. A.Y. Rudensky is a Howard Hughes Medical Institute Investigator and is supported by a National Institutes of Health grant
Comparison of three larval bioassays to evaluate susceptibility of Rhipicephalus (Boophilus) microplus to amitraz
Antifungal and antioxidant activity of fatty acid methyl esters from vegetable oils
ABSTRACT Fatty acid methyl esters (FAMEs) were obtained from vegetable oils of soybean, corn and sunflower. The current study was focused on evaluating the antifungal activity of FAMEs mainly against Paracoccidioides spp., as well as testing the interaction of these compounds with commercial antifungal drugs and also their antioxidant potential. FAMEs presented small IC50 values (1.86-9.42 μg/mL). All three FAMEs tested showed antifungal activity against isolates of Paracoccidioides spp. with MIC values ranging from 15.6-500 µg/mL. Sunflower FAMEs exhibited antifungal activity that extended also to other genera, with an MIC of 15.6 μg/mL against Candida glabrata and C. krusei and 31.2 μg/mL against C. parapsilosis. FAMEs exhibited a synergetic effect with itraconazole. The antifungal activity of the FAMEs against isolates of Paracoccidioides spp. is likely due to the presence of methyl linoleate, the major compound present in all three FAMEs. The results obtained indicate the potential of FAMEs as sources for antifungal and antioxidant activity
Acute and Reproductive Effects of Align®, an Insecticide Containing Azadirachtin, on the Grape Berry Moth, Lobesia botrana
Azadirachtin, derived from the neem tree, Azadirachta indica A. Juss (Sapindales: Meliaceae), seems promising for use in integrated pest management programs to control a variety of pest species. A commercial formulation of azadirachtin, Align®, has been evaluated against different developmental stages of the European grape berry moth, Lobesia botrana Denis and Schiffermüller (Lepidoptera: Tortricidae). When administered orally, Align reduced the fecundity and fertility of adults treated with 1, 5, and 10 mg litre-1. At the highest doses, fecundity and fertility were zero, but longevity was not affected. An LC50 of 231.5 mg litre-1 was obtained when Align was sprayed on eggs less than 1 day old. Hatching of all egg classes was significantly reduced, and this reduction was more pronounced for eggs less than 24 h old. LC50 values of 2.1 mg litre-1 for first instars and 18.7 mg litre-1 for third instars were obtained when Align was present in the diet. Larvae reared on a diet containing different concentrations of Align did not molt into adults at the highest concentrations (0.3, 0.6, 1.2), and 50% molted at the lowest concentration (0.15). Phenotypic effects included inability to molt properly and deformities. The combination of acute toxicity and low, effective concentrations of Align observed in this study could lead to the inclusion of insecticides containing azadirachtin in integrated management programs against this pest
Treatment of gram-positive deep sternal wound infections in cardiac surgery -experiences with daptomycin-
The reported incidence of deep sternal wound infection (DSWI) after cardiac surgery is 0.4-5% with Staphylococcus aureus being the most common pathogen isolated from infected wound sternotomies and bacteraemic blood cultures. This infection is associated with a higher morbidity and mortality than other known aetiologies. Little is reported about the optimal antibiotic management. The aim of the study is to quantify the application of daptomycin treatment of DSWI due to gram-positive organisms post cardiac surgery
Blockade of IL-33 release and suppression of type 2 innate lymphoid cell responses by helminth secreted products in airway allergy
Helminth parasites such as the nematode Heligmosomoides polygyrus strongly inhibit T helper type 2 (Th2) allergy, as well as colitis and autoimmunity. Here, we show that the soluble excretory/secretory products of H. polygyrus (HES) potently suppress inflammation induced by allergens from the common fungus Alternaria alternata. Alternaria extract, when administered to mice intranasally with ovalbumin (OVA) protein, induces a rapid (1–48 h) innate response while also priming an OVA-specific Th2 response that can be evoked 14 days later by intranasal administration of OVA alone. In this model, HES coadministration with Alternaria/OVA suppressed early IL-33 release, innate lymphoid cell (ILC) production of IL-4, IL-5, and IL-13, and localized eosinophilia. Upon OVA challenge, type 2 ILC (ILC2)/Th2 cytokine production and eosinophilia were diminished in HES-treated mice. HES administration 6 h before Alternaria blocked the allergic response, and its suppressive activity was abolished by heat treatment. Administration of recombinant IL-33 at sensitization with Alternaria/OVA/HES abrogated HES suppression of OVA-specific responses at challenge, indicating that suppression of early Alternaria-induced IL-33 release could be central to the anti-allergic effects of HES. Thus, this helminth parasite targets IL-33 production as part of its armory of suppressive effects, forestalling the development of the type 2 immune response to infection and allergic sensitization
- …
