25 research outputs found
Evaluation of differential effects of metformin treatment in obese children according to pubertal stage and genetic variations: study protocol for a randomized controlled trial
Researching Effective Strategies to Improve Insulin Sensitivity in Children and Teenagers - RESIST. A randomised control trial investigating the effects of two different diets on insulin sensitivity in young people with insulin resistance and/or pre-diabetes.
Unplanned medication discontinuation as a potential pharmacovigilance signal : a nested young person cohort study
Because of relatively small treatment numbers together with low adverse drug reaction (ADR) reporting rates the timely identification of ADRs affecting children and young people is problematic. The primary objective of this study was to assess the utility of unplanned medication discontinuation as a signal for possible ADRs in children and young people. Using orlistat as an exemplar, all orlistat prescriptions issued to patients up to 18 years of age together with patient characteristics, prescription duration, co-prescribed medicines and recorded clinical (Read) codes were identified from the Primary Care Informatics Unit database between 1st Jan 2006-30th Nov 2009. Binary logistic regression was used to assess association between characteristics and discontinuation. During the study period, 79 patients were prescribed orlistat (81% female, median age 17 years). Unplanned medication discontinuation rates for orlistat were 52% and 77% at 1 and 3-months. Almost 20% of patients were co-prescribed an anti-depressant. One month unplanned medication discontinuation was significantly lower in the least deprived group (SIMD 1-2 compared to SIMD 9-10 OR 0.09 (95% CI0.01 - 0.83)) and those co-prescribed at least one other medication. At 3 months, discontinuation was higher in young people (≥17 yr versus, OR 3.07 (95% CI1.03 - 9.14)). Read codes were recorded for digestive, respiratory and urinary symptoms around the time of discontinuation for 24% of patients. Urinary retention was reported for 7.6% of patients. Identification of unplanned medication discontinuation using large primary care datasets may be a useful tool for pharmacovigilance signal generation and detection of potential ADRs in children and young people
Glucose tolerance of offspring of mother with gestational diabetes mellitus in a low-risk population
De Novo Truncating Variants in ASXL2 Are Associated with a Unique and Recognizable Clinical Phenotype
The ASXL genes (ASXL1, ASXL2, and ASXL3) participate in body patterning during embryogenesis and encode proteins involved in epigenetic regulation and assembly of transcription factors to specific genomic loci. Germline de novo truncating variants in ASXL1 and ASXL3 have been respectively implicated in causing Bohring-Opitz and Bainbridge-Ropers syndromes, which result in overlapping features of severe intellectual disability and dysmorphic features. ASXL2 has not yet been associated with a human Mendelian disorder. In this study, we performed whole-exome sequencing in six unrelated probands with developmental delay, macrocephaly, and dysmorphic features. All six had de novo truncating variants in ASXL2. A careful review enabled the recognition of a specific phenotype consisting of macrocephaly, prominent eyes, arched eyebrows, hypertelorism, a glabellar nevus flammeus, neonatal feeding difficulties, hypotonia, and developmental disabilities. Although overlapping features with Bohring-Opitz and Bainbridge-Ropers syndromes exist, features that distinguish the ASXL2-associated condition from ASXL1- and ASXL3-related disorders are macrocephaly, absence of growth retardation, and more variability in the degree of intellectual disabilities. We were also able to demonstrate with mRNA studies that these variants are likely to exert a dominant-negative effect, given that both alleles are expressed in blood and the mutated ASXL2 transcripts escape nonsense-mediated decay. In conclusion, de novo truncating variants in ASXL2 underlie a neurodevelopmental syndrome with a clinically recognizable phenotype. This report expands the germline disorders that are linked to the ASXL genes
Metformin in combination with structured lifestyle intervention improved body mass index in obese adolescents, but did not improve insulin resistance
Study of LEP, MRAP2 and POMC genes as potential causes of severe obesity in Brazilian patients
Prolactin Receptors and Placental Lactogen Drive Male Mouse Pancreatic Islets to Pregnancy-Related mRNA Changes
Pregnancy requires a higher functional beta cell mass and this is associated with profound changes in the gene expression profile of pancreatic islets. Taking Tph1 as a sensitive marker for pregnancy-related islet mRNA expression in female mice, we previously identified prolactin receptors and placental lactogen as key signalling molecules. Since beta cells from male mice also express prolactin receptors, the question arose whether male and female islets have the same phenotypic resilience at the mRNA level during pregnancy. We addressed this question in vitro, by stimulating cultured islets with placental lactogen and in vivo, by transplanting male or female islets into female acceptor mice. Additionally, the islet mRNA expression pattern of pregnant prolactin receptor deficient mice was compared with that of their pregnant wild-type littermates. When cultured with placental lactogen, or when transplanted in female recipients that became pregnant (day 12.5), male islets induced the 'islet pregnancy gene signature', which we defined as the 12 highest induced genes in non-transplanted female islets at day 12.5 of pregnancy. In addition, serotonin immunoreactivity and beta cell proliferation was also induced in these male transplanted islets at day 12.5 of pregnancy. In order to further investigate the importance of prolactin receptors in these mRNA changes we used a prolactin receptor deficient mouse model. For the 12 genes of the signature, which are highly induced in control pregnant mice, no significant induction of mRNA transcripts was found at day 9.5 of pregnancy. Together, our results support the key role of placental lactogen as a circulating factor that can trigger the pregnancy mRNA profile in both male and female beta cells
