24 research outputs found
Biochemical and developmental characterization of carbonic anhydrase II from chicken erythrocytes
<p>Abstract</p> <p>Background</p> <p>Carbonic anhydrase (CA) of the chicken has attracted attention for a long time because it has an important role in the eggshell formation. The developmental profile of CA-II isozyme levels in chicken erythrocytes has not been determined or reported. Furthermore, the relations with CA-II in erythrocyte and egg production are not discussed. In the present study, we isolated CA-II from erythrocytes of chickens and determined age-related changes of CA-II levels in erythrocytes.</p> <p>Methods</p> <p>Chicken CA-II was purified by a combination of column chromatography. The levels of CA-II in the hemolysate of the chicken were determined using the ELISA system in blood samples from 279 female chickens, ages 1 to 93 weeks, 69 male chickens, ages 3 to 59 weeks and 52 weeks female Araucana-chickens.</p> <p>Results</p> <p>The mean concentration of CA-II in hemolysate from 1-week-old female was 50.8 ± 11.9 mg/g of Hb. The mean levels of CA-II in 25-week-old (188.1 ± 82.6 mg/g of Hb), 31-week-old (193.6 ± 69.7 mg/g of Hb) and 49-week-old (203.8 ± 123.5 mg/g of Hb) female-chickens showed the highest level of CA-II. The levels of CA-II in female WL-chickens significantly decreased at 63 week (139.0 ± 19.3 mg/g of Hb). The levels of CA-II in female WL-chicken did not change from week 63 until week 93.The mean level of CA-II in hemolysate of 3-week-old male WL-chickens was 78.3 ± 20.7 mg/g of Hb. The levels of CA-II in male WL-chickens did not show changes in the week 3 to week 59 timeframe. The mean level of CA-II in 53-week-old female Araucana-chickens was 23.4 ± 1.78 mg/g of Hb. These levels of CA-II were about 11% of those of 49-week-old female WL-chickens. Simple linear regression analysis showed significant associations between the level of CA-II and egg laying rate from 16 week-old at 63 week-old WL-chicken (p < 0.01).</p> <p>Conclusions</p> <p>Developmental changes and sexual differences of CA-II concentration in WL-chicken erythrocytes were observed. The concentration of CA-II in the erythrocyte of WL-chicken was much higher than that in Araucana-chicken (p < 0.01).</p
Effects of elevated seawater pCO2 on gene expression patterns in the gills of the green crab, Carcinus maenas
Background: The green crab Carcinus maenas is known for its high acclimation potential to varying environmental
abiotic conditions. A high ability for ion and acid-base regulation is mainly based on an efficient regulation
apparatus located in gill epithelia. However, at present it is neither known which ion transport proteins play a key
role in the acid-base compensation response nor how gill epithelia respond to elevated seawater pCO2 as
predicted for the future. In order to promote our understanding of the responses of green crab acid-base
regulatory epithelia to high pCO2, Baltic Sea green crabs were exposed to a pCO2 of 400 Pa. Gills were screened
for differentially expressed gene transcripts using a 4,462-feature microarray and quantitative real-time PCR.
Results: Crabs responded mainly through fine scale adjustment of gene expression to elevated pCO2. However, 2%
of all investigated transcripts were significantly regulated 1.3 to 2.2-fold upon one-week exposure to CO2 stress.
Most of the genes known to code for proteins involved in osmo- and acid-base regulation, as well as cellular stress
response, were were not impacted by elevated pCO2. However, after one week of exposure, significant changes
were detected in a calcium-activated chloride channel, a hyperpolarization activated nucleotide-gated potassium
channel, a tetraspanin, and an integrin. Furthermore, a putative syntaxin-binding protein, a protein of the
transmembrane 9 superfamily, and a Cl-/HCO3
- exchanger of the SLC 4 family were differentially regulated. These
genes were also affected in a previously published hypoosmotic acclimation response study.
Conclusions: The moderate, but specific response of C. maenas gill gene expression indicates that (1) seawater
acidification does not act as a strong stressor on the cellular level in gill epithelia; (2) the response to hypercapnia
is to some degree comparable to a hypoosmotic acclimation response; (3) the specialization of each of the
posterior gill arches might go beyond what has been demonstrated up to date; and (4) a re-configuration of gill
epithelia might occur in response to hypercapnia
A comparative analysis of host responses to avian influenza infection in ducks and chickens highlights a role for the interferon-induced transmembrane proteins in viral resistance
Chickens are susceptible to infection with a limited number of Influenza A viruses and are a potential source of a human influenza pandemic. In particular, H5 and H7 haemagglutinin subtypes can evolve from low to highly pathogenic strains in gallinaceous poultry. Ducks on the other hand are a natural reservoir for these viruses and are able to withstand most avian influenza strains. Results: Transcriptomic sequencing of lung and ileum tissue samples from birds infected with high (H5N1) and low (H5N2) pathogenic influenza viruses has allowed us to compare the early host response to these infections in both these species. Chickens (but not ducks) lack the intracellular receptor for viral ssRNA, RIG-I and the gene for an important RIG-I binding protein, RNF135. These differences in gene content partly explain the differences in host responses to low pathogenic and highly pathogenic avian influenza virus in chicken and ducks. We reveal very different patterns of expression of members of the interferon-induced transmembrane protein (IFITM) gene family in ducks and chickens. In ducks, IFITM1, 2 and 3 are strongly up regulated in response to highly pathogenic avian influenza, where little response is seen in chickens. Clustering of gene expression profiles suggests IFITM1 and 2 have an anti-viral response and IFITM3 may restrict avian influenza virus through cell membrane fusion. We also show, through molecular phylogenetic analyses, that avian IFITM1 and IFITM3 genes have been subject to both episodic and pervasive positive selection at specific codons. In particular, avian IFITM1 showed evidence of positive selection in the duck lineage at sites known to restrict influenza virus infection. Conclusions: Taken together these results support a model where the IFITM123 protein family and RIG-I all play a crucial role in the tolerance of ducks to highly pathogenic and low pathogenic strains of avian influenza viruses when compared to the chicken
