184 research outputs found
The Evolution of Bat Vestibular Systems in the Face of Potential Antagonistic Selection Pressures for Flight and Echolocation
PMCID: PMC3634842This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited
Testing foundations of quantum mechanics with photons
The foundational ideas of quantum mechanics continue to give rise to
counterintuitive theories and physical effects that are in conflict with a
classical description of Nature. Experiments with light at the single photon
level have historically been at the forefront of tests of fundamental quantum
theory and new developments in photonics engineering continue to enable new
experiments. Here we review recent photonic experiments to test two
foundational themes in quantum mechanics: wave-particle duality, central to
recent complementarity and delayed-choice experiments; and Bell nonlocality
where recent theoretical and technological advances have allowed all
controversial loopholes to be separately addressed in different photonics
experiments.Comment: 10 pages, 5 figures, published as a Nature Physics Insight review
articl
Variable strength of forest stand attributes and weather conditions on the questing activity of Ixodes ricinus ticks over years in managed forests
Given the ever-increasing human impact through land use and climate change on the environment, we crucially need to achieve a better understanding of those factors that influence the questing activity of ixodid ticks, a major disease-transmitting vector in temperate forests. We investigated variation in the relative questing nymph densities of Ixodes ricinus in differently managed forest types for three years (2008–2010) in SW Germany by drag sampling. We used a hierarchical Bayesian modeling approach to examine the relative effects of habitat and weather and to consider possible nested structures of habitat and climate forces. The questing activity of nymphs was considerably larger in young forest successional stages of thicket compared with pole wood and timber stages. Questing nymph density increased markedly with milder winter temperatures. Generally, the relative strength of the various environmental forces on questing nymph density differed across years. In particular, winter temperature had a negative effect on tick activity across sites in 2008 in contrast to the overall effect of temperature across years. Our results suggest that forest management practices have important impacts on questing nymph density. Variable weather conditions, however, might override the effects of forest management practices on the fluctuations and dynamics of tick populations and activity over years, in particular, the preceding winter temperatures. Therefore, robust predictions and the detection of possible interactions and nested structures of habitat and climate forces can only be quantified through the collection of long-term data. Such data are particularly important with regard to future scenarios of forest management and climate warming
Independent evolution of shape and motility allows evolutionary flexibility in Firmicutes bacteria
Functional morphological adaptation is an implicit assumption across many ecological studies. However, despite a few pioneering
attempts to link bacterial form and function, functional morphology is largely unstudied in prokaryotes. One intriguing
candidate for analysis is bacterial shape, as multiple lines of theory indicate that cell shape and motility should be strongly
correlated. Here we present a large-scale use of modern phylogenetic comparative methods to explore this relationship across
325 species of the phylum Firmicutes. In contrast to clear predictions from theory, we show that cell shape and motility are not
coupled, and that transitions to and from flagellar motility are common and strongly associated with lifestyle (free-living or
host-associated). We find no association between shape and lifestyle, and contrary to recent evidence, no indication that shape
is associated with pathogenicity. Our results suggest that the independent evolution of shape and motility in this group might
allow a greater evolutionary flexibility
Structure of a Wbl protein and implications for NO sensing by M. tuberculosis
Mycobacterium tuberculosis causes pulmonary tuberculosis (TB) and claims ~1.8 million human lives per annum. Host nitric oxide (NO) is important in controlling TB infection. M. tuberculosis WhiB1 is a NO-responsive Wbl protein (actinobacterial iron-sulfur proteins first identified in the 1970s). Until now, the structure of a Wbl protein has not been available. Here a NMR structural model of WhiB1 reveals that Wbl proteins are four-helix bundles with a core of three α-helices held together by a [4Fe-4S] cluster. The iron-sulfur cluster is required for formation of a complex with the major sigma factor (σA) and reaction with NO disassembles this complex. The WhiB1 structure suggests that loss of the iron-sulfur cluster (by nitrosylation) permits positively charged residues in the C-terminal helix to engage in DNA binding, triggering a major reprogramming of gene expression that includes components of the virulence-critical ESX-1 secretion system
Comparative genomics of the major parasitic worms
Parasitic nematodes (roundworms) and platyhelminths (flatworms) cause debilitating chronic infections of humans and animals, decimate crop production and are a major impediment to socioeconomic development. Here we report a broad comparative study of 81 genomes of parasitic and non-parasitic worms. We have identified gene family births and hundreds of expanded gene families at key nodes in the phylogeny that are relevant to parasitism. Examples include gene families that modulate host immune responses, enable parasite migration though host tissues or allow the parasite to feed. We reveal extensive lineage-specific differences in core metabolism and protein families historically targeted for drug development. From an in silico screen, we have identified and prioritized new potential drug targets and compounds for testing. This comparative genomics resource provides a much-needed boost for the research community to understand and combat parasitic worms
Accommodating individual travel history and unsampled diversity in Bayesian phylogeographic inference of SARS-CoV-2
Spatiotemporal bias in genome sampling can severely confound discrete trait phylogeographic inference. This has impeded our ability to accurately track the spread of SARS-CoV-2, the virus responsible for the COVID-19 pandemic, despite the availability of unprecedented numbers of SARS-CoV-2 genomes. Here, we present an approach to integrate individual travel history data in Bayesian phylogeographic inference and apply it to the early spread of SARS-CoV-2. We demonstrate that including travel history data yields i) more realistic hypotheses of virus spread and ii) higher posterior predictive accuracy compared to including only sampling location. We further explore methods to ameliorate the impact of sampling bias by augmenting the phylogeographic analysis with lineages from undersampled locations. Our reconstructions reinforce specific transmission hypotheses suggested by the inclusion of travel history data, but also suggest alternative routes of virus migration that are plausible within the epidemiological context but are not apparent with current sampling efforts.status: publishe
Recruitment in the sea: bacterial genes required for inducing larval settlement in a polychaete worm
Metamorphically competent larvae of the marine tubeworm Hydroides elegans can be induced to metamorphose by biofilms of the bacterium Pseudoalteromonas luteoviolacea strain HI1. Mutational analysis was used to identify four genes that are necessary for metamorphic induction and encode functions that may be related to cell adhesion and bacterial secretion systems. No major differences in biofilm characteristics, such as biofilm cell density, thickness, biomass and EPS biomass, were seen between biofilms composed of P. luteoviolacea (HI1) and mutants lacking one of the four genes. The analysis indicates that factors other than those relating to physical characteristics of biofilms are critical to the inductive capacity of P. luteoviolacea (HI1), and that essential inductive molecular components are missing in the non-inductive deletion-mutant strains
A Single-Photon Imager Based on Microwave Plasmonic Superconducting Nanowire
Detecting spatial and temporal information of individual photons by using
single-photon-detector (SPD) arrays is critical to applications in
spectroscopy, communication, biological imaging, astronomical observation, and
quantum-information processing. Among the current SPDs1,detectors based on
superconducting nanowires have outstanding performance2, but are limited in
their ability to be integrated into large scale arrays due to the engineering
difficulty of high-bandwidth cryogenic electronic readout3-8. Here, we address
this problem by demonstrating a scalable single-photon imager using a single
continuous photon-sensitive superconducting nanowire microwave-plasmon
transmission line. By appropriately designing the nanowire's local
electromagnetic environment so that the nanowire guides microwave plasmons, the
propagating voltages signals generated by a photon-detection event were slowed
down to ~ 2% of the speed of light. As a result, the time difference between
arrivals of the signals at the two ends of the nanowire naturally encoded the
position and time of absorption of the photon. Thus, with only two readout
lines, we demonstrated that a 19.7-mm-long nanowire meandered across an area of
286 {\mu}m * 193 {\mu}m was capable of resolving ~590 effective pixels while
simultaneously recording the arrival times of photons with a temporal
resolution of 50 ps. The nanowire imager presents a scalable approach to
realizing high-resolution photon imaging in time and space
Cryptosporidium as a testbed for single cell genome characterization of unicellular eukaryotes
- …
