347 research outputs found
Presymptomatic risk assessment for chronic non-communicable diseases
The prevalence of common chronic non-communicable diseases (CNCDs) far
overshadows the prevalence of both monogenic and infectious diseases combined.
All CNCDs, also called complex genetic diseases, have a heritable genetic
component that can be used for pre-symptomatic risk assessment. Common single
nucleotide polymorphisms (SNPs) that tag risk haplotypes across the genome
currently account for a non-trivial portion of the germ-line genetic risk and
we will likely continue to identify the remaining missing heritability in the
form of rare variants, copy number variants and epigenetic modifications. Here,
we describe a novel measure for calculating the lifetime risk of a disease,
called the genetic composite index (GCI), and demonstrate its predictive value
as a clinical classifier. The GCI only considers summary statistics of the
effects of genetic variation and hence does not require the results of
large-scale studies simultaneously assessing multiple risk factors. Combining
GCI scores with environmental risk information provides an additional tool for
clinical decision-making. The GCI can be populated with heritable risk
information of any type, and thus represents a framework for CNCD
pre-symptomatic risk assessment that can be populated as additional risk
information is identified through next-generation technologies.Comment: Plos ONE paper. Previous version was withdrawn to be updated by the
journal's pdf versio
Non-Fermi-liquid d-wave metal phase of strongly interacting electrons
Developing a theoretical framework for conducting electronic fluids
qualitatively distinct from those described by Landau's Fermi-liquid theory is
of central importance to many outstanding problems in condensed matter physics.
One such problem is that, above the transition temperature and near optimal
doping, high-transition-temperature copper-oxide superconductors exhibit
`strange metal' behaviour that is inconsistent with being a traditional Landau
Fermi liquid. Indeed, a microscopic theory of a strange-metal quantum phase
could shed new light on the interesting low-temperature behaviour in the
pseudogap regime and on the d-wave superconductor itself. Here we present a
theory for a specific example of a strange metal---the 'd-wave metal'. Using
variational wavefunctions, gauge theoretic arguments, and ultimately
large-scale density matrix renormalization group calculations, we show that
this remarkable quantum phase is the ground state of a reasonable microscopic
Hamiltonian---the usual t-J model with electron kinetic energy and two-spin
exchange supplemented with a frustrated electron `ring-exchange' term,
which we here examine extensively on the square lattice two-leg ladder. These
findings constitute an explicit theoretical example of a genuine
non-Fermi-liquid metal existing as the ground state of a realistic model.Comment: 22 pages, 12 figures: 6 pages, 7 figures of main text + 16 pages, 5
figures of Supplementary Information; this is approximately the version
published in Nature, minus various subedits in the main tex
Sudden cardiac arrest prediction via deep learning electrocardiogram analysis
Aims: Sudden cardiac arrest (SCA) is a commonly fatal event that often occurs without prior indications. To improve outcomes and enable preventative strategies, the electrocardiogram (ECG) in conjunction with deep learning was explored as a potential screening tool.
Methods and results: A publicly available data set containing 10 s of 12-lead ECGs from individuals who did and did not have an SCA, information about time from ECG to arrest, and age and sex was utilized for analysis to individually predict SCA or not using deep convolution neural network models. The base model that included age and sex, ECGs within 1 day prior to arrest, and data sampled from windows of 720 ms around the R-waves from 221 individuals with SCA and 1046 controls had an area under the receiver operating characteristic curve of 0.77. With sensitivity set at 95%, base model specificity was 31%, which is not clinically applicable. Gradient-weighted class activation mapping showed that the model mostly relied on the QRS complex to make predictions. However, models with ECGs recorded between 1 day to 1 month and 1 month to 1 year prior to arrest demonstrated predictive capabilities.
Conclusion: Deep learning models processing ECG data are a promising means of screening for SCA, and this method explains differences in SCAs due to age and sex. Model performance improved when ECGs were nearer in time to SCAs, although ECG data up to a year prior had predictive value. Sudden cardiac arrest prediction was more dependent upon QRS complex data compared to other ECG segments
The rise of consumer health wearables: promises and barriers
Will consumer wearable technology ever be adopted or accepted by the medical community? Patients and practitioners regularly use digital technology (e.g., thermometers and glucose monitors) to identify and discuss symptoms. In addition, a third of general practitioners in the United Kingdom report that patients arrive with suggestions for treatment based on online search results. However, consumer health wearables are predicted to become the next “Dr Google.” One in six (15%) consumers in the United States currently uses wearable technology, including smartwatches or fitness bands. While 19 million fitness devices are likely to be sold this year, that number is predicted to grow to 110 million in 2018. As the line between consumer health wearables and medical devices begins to blur, it is now possible for a single wearable device to monitor a range of medical risk factors. Potentially, these devices could give patients direct access to personal analytics that can contribute to their health, facilitate preventive care, and aid in the management of ongoing illness. However, how this new wearable technology might best serve medicine remains unclea
A novel, rapid method to compare the therapeutic windows of oral anticoagulants using the Hill coefficient
A central challenge in designing and administering effective anticoagulants is achieving the proper therapeutic window and dosage for each patient. The Hill coefficient, nH, which measures the steepness of a dose-response relationship, may be a useful gauge of this therapeutic window. We sought to measure the Hill coefficient of available anticoagulants to gain insight into their therapeutic windows. We used a simple fluorometric in vitro assay to determine clotting activity in platelet poor plasma after exposure to various concentrations of anticoagulants. The Hill coefficient for argatroban was the lowest, at 1.7±0.2 (95% confidence interval, CI), and the Hill coefficient for fondaparinux was the highest, at 4.5±1.3 (95% CI). Thus, doubling the dose of fondaparinux from its IC50 would decrease coagulation activity by nearly a half, whereas doubling the dose of argatroban from its IC50 would decrease coagulation activity by merely one quarter. These results show a significant variation among the Hill coefficients, suggesting a similar variation in therapeutic windows among anticoagulants in our assay
GWAS meta-analysis reveals novel loci and genetic correlates for general cognitive function : a report from the COGENT consortium
CORRIGENDUM Molecular Psychiatry (2017) 22, 1651–1652 http://www.nature.com/articles/mp2017197.pdfThe complex nature of human cognition has resulted in cognitive genomics lagging behind many other fields in terms of gene discovery using genome-wide association study (GWAS) methods. In an attempt to overcome these barriers, the current study utilized GWAS meta-analysis to examine the association of common genetic variation (similar to 8M single-nucleotide polymorphisms (SNP) with minor allele frequency >= 1%) to general cognitive function in a sample of 35 298 healthy individuals of European ancestry across 24 cohorts in the Cognitive Genomics Consortium (COGENT). In addition, we utilized individual SNP lookups and polygenic score analyses to identify genetic overlap with other relevant neurobehavioral phenotypes. Our primary GWAS meta-analysis identified two novel SNP loci (top SNPs: rs76114856 in the CENPO gene on chromosome 2 and rs6669072 near LOC105378853 on chromosome 1) associated with cognitive performance at the genome-wide significance level (PPeer reviewe
Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk.
Blood pressure is a heritable trait influenced by several biological pathways and responsive to environmental stimuli. Over one billion people worldwide have hypertension (≥140 mm Hg systolic blood pressure or ≥90 mm Hg diastolic blood pressure). Even small increments in blood pressure are associated with an increased risk of cardiovascular events. This genome-wide association study of systolic and diastolic blood pressure, which used a multi-stage design in 200,000 individuals of European descent, identified sixteen novel loci: six of these loci contain genes previously known or suspected to regulate blood pressure (GUCY1A3-GUCY1B3, NPR3-C5orf23, ADM, FURIN-FES, GOSR2, GNAS-EDN3); the other ten provide new clues to blood pressure physiology. A genetic risk score based on 29 genome-wide significant variants was associated with hypertension, left ventricular wall thickness, stroke and coronary artery disease, but not kidney disease or kidney function. We also observed associations with blood pressure in East Asian, South Asian and African ancestry individuals. Our findings provide new insights into the genetics and biology of blood pressure, and suggest potential novel therapeutic pathways for cardiovascular disease prevention
Predicting residue contacts using pragmatic correlated mutations method: reducing the false positives
BACKGROUND: Predicting residues' contacts using primary amino acid sequence alone is an important task that can guide 3D structure modeling and can verify the quality of the predicted 3D structures. The correlated mutations (CM) method serves as the most promising approach and it has been used to predict amino acids pairs that are distant in the primary sequence but form contacts in the native 3D structure of homologous proteins. RESULTS: Here we report a new implementation of the CM method with an added set of selection rules (filters). The parameters of the algorithm were optimized against fifteen high resolution crystal structures with optimization criterion that maximized the confidentiality of the predictions. The optimization resulted in a true positive ratio (TPR) of 0.08 for the CM without filters and a TPR of 0.14 for the CM with filters. The protocol was further benchmarked against 65 high resolution structures that were not included in the optimization test. The benchmarking resulted in a TPR of 0.07 for the CM without filters and to a TPR of 0.09 for the CM with filters. CONCLUSION: Thus, the inclusion of selection rules resulted to an overall improvement of 30%. In addition, the pair-wise comparison of TPR for each protein without and with filters resulted in an average improvement of 1.7. The methodology was implemented into a web server that is freely available to the public. The purpose of this implementation is to provide the 3D structure predictors with a tool that can help with ranking alternative models by satisfying the largest number of predicted contacts, as well as it can provide a confidence score for contacts in cases where structure is known
Voluntary Medical Male Circumcision: An Introduction to the Cost, Impact, and Challenges of Accelerated Scaling Up
Catherine Hankins, Steven Forsythe, and Emmanuel Njeuhmeli provide an overview of the “Voluntary Medical Male Circumcision for HIV Prevention: The Cost, Impact, and Challenges of Accelerated Scale-Up in Southern and Eastern Africa” Collection, calling for leadership and vision to help halt the HIV epidemic
Composition-based statistics and translated nucleotide searches: Improving the TBLASTN module of BLAST
BACKGROUND: TBLASTN is a mode of operation for BLAST that aligns protein sequences to a nucleotide database translated in all six frames. We present the first description of the modern implementation of TBLASTN, focusing on new techniques that were used to implement composition-based statistics for translated nucleotide searches. Composition-based statistics use the composition of the sequences being aligned to generate more accurate E-values, which allows for a more accurate distinction between true and false matches. Until recently, composition-based statistics were available only for protein-protein searches. They are now available as a command line option for recent versions of TBLASTN and as an option for TBLASTN on the NCBI BLAST web server. RESULTS: We evaluate the statistical and retrieval accuracy of the E-values reported by a baseline version of TBLASTN and by two variants that use different types of composition-based statistics. To test the statistical accuracy of TBLASTN, we ran 1000 searches using scrambled proteins from the mouse genome and a database of human chromosomes. To test retrieval accuracy, we modernize and adapt to translated searches a test set previously used to evaluate the retrieval accuracy of protein-protein searches. We show that composition-based statistics greatly improve the statistical accuracy of TBLASTN, at a small cost to the retrieval accuracy. CONCLUSION: TBLASTN is widely used, as it is common to wish to compare proteins to chromosomes or to libraries of mRNAs. Composition-based statistics improve the statistical accuracy, and therefore the reliability, of TBLASTN results. The algorithms used by TBLASTN are not widely known, and some of the most important are reported here. The data used to test TBLASTN are available for download and may be useful in other studies of translated search algorithms
- …
