725 research outputs found
Self-duality of the D1-D5 near-horizon
We explore fermionic T-duality and self-duality in the geometry AdS3 x S3 x
T4 in type IIB supergravity. We explicitly construct the Killing spinors and
the fermionic T-duality isometries and show that the geometry is self-dual
under a combination of two bosonic AdS3 T-dualities, four fermionic T-dualities
and either two additional T-dualities along T4 or two T-dualities along S3. In
addition, we show that the presence of a B-field acts as an obstacle to
self-duality, a property attributable to S- duality and fermionic T-duality not
commuting. Finally, we argue that fermionic T-duality may be extended to CY2 =
K3, a setting where we cannot explicitly construct the Killing spinors.Comment: 24 pages, references added, changes made to reinforce the point that
S-duality and fermionic T-duality generically do not commute, version
accepted to JHE
Cancer and thrombosis: Managing the risks and approaches to thromboprophylaxis
Patients with cancer are at increased risk of venous thromboembolism (VTE) compared with patients without cancer. This results from both the prothrombotic effects of the cancer itself and iatrogenic factors, such as chemotherapy, radiotherapy, indwelling central venous devices and surgery, that further increase the risk of VTE. Although cancer-associated thrombosis remains an important cause of morbidity and mortality, it is often underdiagnosed and undertreated. However, evidence is accumulating to support the use of low-molecular-weight heparins (LMWHs) in the secondary prevention of VTE in patients with cancer. Not only have LMWHs been shown to be at least as effective as coumarin derivatives in this setting, but they have a lower incidence of complications, including bleeding, and are not associated with the practical problems of warfarin therapy. Furthermore, a growing number of studies indicate that LMWHs may improve survival among patients with cancer due to a possible antitumor effect. Current evidence suggests that LMWHs should increasingly be considered for the long-term management of VTE in patients with cancer
Effect of Biodiversity Changes in Disease Risk: Exploring Disease Emergence in a Plant-Virus System
The effect of biodiversity on the ability of parasites to infect their host and cause disease (i.e. disease risk) is a major question in pathology, which is central to understand the emergence of infectious diseases, and to develop strategies for their management. Two hypotheses, which can be considered as extremes of a continuum, relate biodiversity to disease risk: One states that biodiversity is positively correlated with disease risk (Amplification Effect), and the second predicts a negative correlation between biodiversity and disease risk (Dilution Effect). Which of them applies better to different host-parasite systems is still a source of debate, due to limited experimental or empirical data. This is especially the case for viral diseases of plants. To address this subject, we have monitored for three years the prevalence of several viruses, and virus-associated symptoms, in populations of wild pepper (chiltepin) under different levels of human management. For each population, we also measured the habitat species diversity, host plant genetic diversity and host plant density. Results indicate that disease and infection risk increased with the level of human management, which was associated with decreased species diversity and host genetic diversity, and with increased host plant density. Importantly, species diversity of the habitat was the primary predictor of disease risk for wild chiltepin populations. This changed in managed populations where host genetic diversity was the primary predictor. Host density was generally a poorer predictor of disease and infection risk. These results support the dilution effect hypothesis, and underline the relevance of different ecological factors in determining disease/infection risk in host plant populations under different levels of anthropic influence. These results are relevant for managing plant diseases and for establishing conservation policies for endangered plant species
FcRn-mediated antibody transport across epithelial cells revealed by electron tomography
The neonatal Fc receptor (FcRn) transports maternal IgG across epithelial barriers, thereby providing the fetus or newborn with humoral immunity before its immune system is fully functional. In newborn rats, FcRn transfers IgG from milk to blood by apical-to-basolateral transcytosis across intestinal epithelial cells. The pH difference between the apical (pH 6.0–6.5) and basolateral (pH 7.4) sides of intestinal epithelial cells facilitates the efficient
unidirectional transport of IgG, because FcRn binds IgG at
pH 6.0–6.5 but not at pH 7 or more. As milk passes through
the neonatal intestine, maternal IgG is removed by FcRn-expressing cells in the proximal small intestine (duodenum and jejunum); remaining proteins are absorbed and degraded by FcRn-negative cells in the distal small intestine (ileum). Here we use electron tomography to make jejunal transcytosis visible directly in space and time, developing new labelling and detection methods to map individual nanogold-labelled Fc within transport
vesicles and simultaneously to characterize these vesicles by immunolabelling. Combining electron tomography with a nonperturbing endocytic label allowed us to conclusively identify receptor-bound ligands, resolve interconnecting vesicles, determine whether a vesicle was microtubule-associated, and accurately trace FcRn-mediated transport of IgG. Our results present a complex picture in which Fc moves through networks of entangled tubular and irregular vesicles, only some of which are microtubule-associated, as it migrates to the basolateral surface. New features
of transcytosis are elucidated, including transport involving multivesicular body inner vesicles/tubules and exocytosis through clathrin-coated pits. Markers for early, late and recycling endosomes each labelled vesicles in different and overlapping morphological classes, revealing spatial complexity in endo-lysosomal trafficking
A Digital Repository and Execution Platform for Interactive Scholarly Publications in Neuroscience
The CARMEN Virtual Laboratory (VL) is a cloud-based platform which allows neuroscientists to store, share, develop, execute, reproduce and publicise their work. This paper describes new functionality in the CARMEN VL: an interactive publications repository. This new facility allows users to link data and software to publications. This enables other users to examine data and software associated with the publication and execute the associated software within the VL using the same data as the authors used in the publication. The cloud-based architecture and SaaS (Software as a Service) framework allows vast data sets to be uploaded and analysed using software services. Thus, this new interactive publications facility allows others to build on research results through reuse. This aligns with recent developments by funding agencies, institutions, and publishers with a move to open access research. Open access provides reproducibility and verification of research resources and results. Publications and their associated data and software will be assured of long-term preservation and curation in the repository. Further, analysing research data and the evaluations described in publications frequently requires a number of execution stages many of which are iterative. The VL provides a scientific workflow environment to combine software services into a processing tree. These workflows can also be associated with publications and executed by users. The VL also provides a secure environment where users can decide the access rights for each resource to ensure copyright and privacy restrictions are met
Identification of common genetic variation that modulates alternative splicing
Alternative splicing of genes is an efficient means of generating variation in protein function. Several disease states have been associated with rare genetic variants that affect splicing patterns. Conversely, splicing efficiency of some genes is known to vary between individuals without apparent ill effects. What is not clear is whether commonly observed phenotypic variation in splicing patterns, and hence potential variation in protein function, is to a significant extent determined by naturally occurring DNA sequence variation and in particular by single nucleotide polymorphisms (SNPs). In this study, we surveyed the splicing patterns of 250 exons in 22 individuals who had been previously genotyped by the International HapMap Project. We identified 70 simple cassette exon alternative splicing events in our experimental system; for six of these, we detected consistent differences in splicing pattern between individuals, with a highly significant association between splice phenotype and neighbouring SNPs. Remarkably, for five out of six of these events, the strongest correlation was found with the SNP closest to the intron-exon boundary, although the distance between these SNPs and the intron-exon boundary ranged from 2 bp to greater than 1,000 bp. Two of these SNPs were further investigated using a minigene splicing system, and in each case the SNPs were found to exert cis-acting effects on exon splicing efficiency in vitro. The functional consequences of these SNPs could not be predicted using bioinformatic algorithms. Our findings suggest that phenotypic variation in splicing patterns is determined by the presence of SNPs within flanking introns or exons. Effects on splicing may represent an important mechanism by which SNPs influence gene function
Recommended from our members
A Rescorla-Wagner Drift-Diffusion Model of Conditioning and Timing
Computational models of classical conditioning have made significant contributions to the theoretic understanding of associative learning, yet they still struggle when the temporal aspects of conditioning are taken into account. Interval timing models have contributed a rich variety of time representations and provided accurate predictions for the timing of responses, but they usually have little to say about associative learning. In this article we present a unified model of conditioning and timing that is based on the influential Rescorla-Wagner conditioning model and the more recently developed Timing Drift-Diffusion model. We test the model by simulating 10 experimental phenomena and show that it can provide an adequate account for 8, and a partial account for the other 2. We argue that the model can account for more phenomena in the chosen set than these other similar in scope models: CSC-TD, MS-TD, Learning to Time and Modular Theory. A comparison and analysis of the mechanisms in these models is provided, with a focus on the types of time representation and associative learning rule used
Genetic polymorphisms associated with the inflammatory response in bacterial meningitis
BACKGROUND
Bacterial meningitis (BM) is an infectious disease that results in high mortality and morbidity. Despite efficacious antibiotic therapy, neurological sequelae are often observed in patients after disease. Currently, the main challenge in BM treatment is to develop adjuvant therapies that reduce the occurrence of sequelae. In recent papers published by our group, we described the associations between the single nucleotide polymorphisms (SNPs) AADAT +401C > T, APEX1 Asn148Glu, OGG1 Ser326Cys and PARP1 Val762Ala and BM. In this study, we analyzed the associations between the SNPs TNF -308G > A, TNF -857C > T, IL-8 -251A > T and BM and investigated gene-gene interactions, including the SNPs that we published previously.
METHODS
The study was conducted with 54 BM patients and 110 healthy volunteers (as the control group). The genotypes were investigated via primer-introduced restriction analysis-polymerase chain reaction (PIRA-PCR) or polymerase chain reaction-based restriction fragment length polymorphism (PCR-RFLP) analysis. Allelic and genotypic frequencies were also associated with cytokine and chemokine levels, as measured with the x-MAP method, and cell counts. We analyzed gene-gene interactions among SNPs using the generalized multifactor dimensionality reduction (GMDR) method.
RESULTS
We did not find significant association between the SNPs TNF -857C > T and IL-8 -251A > T and the disease. However, a higher frequency of the variant allele TNF -308A was observed in the control group, associated with changes in cytokine levels compared to individuals with wild type genotypes, suggesting a possible protective role. In addition, combined inter-gene interaction analysis indicated a significant association between certain genotypes and BM, mainly involving the alleles APEX1 148Glu, IL8 -251 T and AADAT +401 T. These genotypic combinations were shown to affect cyto/chemokine levels and cell counts in CSF samples from BM patients.
CONCLUSIONS
In conclusion, this study revealed a significant association between genetic variability and altered inflammatory responses, involving important pathways that are activated during BM. This knowledge may be useful for a better understanding of BM pathogenesis and the development of new therapeutic approaches
Integration of robotic surgery into routine practice and impacts on communication, collaboration, and decision making: A realist process evaluation protocol
Background: Robotic surgery offers many potential benefits for patients. While an increasing number of healthcare providers are purchasing surgical robots, there are reports that the technology is failing to be introduced into routine practice. Additionally, in robotic surgery, the surgeon is physically separated from the patient and the rest of the team, with the potential to negatively impact teamwork in the operating theatre. The aim of this study is to ascertain: how and under what circumstances robotic surgery is effectively introduced into routine practice; and how and under what circumstances robotic surgery impacts teamwork, communication and decision making, and subsequent patient outcomes. Methods and design: We will undertake a process evaluation alongside a randomised controlled trial comparing laparoscopic and robotic surgery for the curative treatment of rectal cancer. Realist evaluation provides an overall framework for the study. The study will be in three phases. In Phase I, grey literature will be reviewed to identify stakeholders' theories concerning how robotic surgery becomes embedded into surgical practice and its impacts. These theories will be refined and added to through interviews conducted across English hospitals that are using robotic surgery for rectal cancer resection with staff at different levels of the organisation, along with a review of documentation associated with the introduction of robotic surgery. In Phase II, a multi-site case study will be conducted across four English hospitals to test and refine the candidate theories. Data will be collected using multiple methods: the structured observation tool OTAS (Observational Teamwork Assessment for Surgery); video recordings of operations; ethnographic observation; and interviews. In Phase III, interviews will be conducted at the four case sites with staff representing a range of surgical disciplines, to assess the extent to which the results of Phase II are generalisable and to refine the resulting theories to reflect the experience of a broader range of surgical disciplines. The study will provide (i) guidance to healthcare organisations on factors likely to facilitate successful implementation and integration of robotic surgery, and (ii) guidance on how to ensure effective communication and teamwork when undertaking robotic surgery
A922 Sequential measurement of 1 hour creatinine clearance (1-CRCL) in critically ill patients at risk of acute kidney injury (AKI)
Meeting abstrac
- …
