9 research outputs found

    Dynamic cellular manufacturing system considering machine failure and workload balance

    No full text
    Abstract Machines are a key element in the production system and their failure causes irreparable effects in terms of cost and time. In this paper, a new multi-objective mathematical model for dynamic cellular manufacturing system (DCMS) is provided with consideration of machine reliability and alternative process routes. In this dynamic model, we attempt to resolve the problem of integrated family (part/machine cell) formation as well as the operators’ assignment to the cells. The first objective minimizes the costs associated with the DCMS. The second objective optimizes the labor utilization and, finally, a minimum value of the variance of workload between different cells is obtained by the third objective function. Due to the NP-hard nature of the cellular manufacturing problem, the problem is initially validated by the GAMS software in small-sized problems, and then the model is solved by two well-known meta-heuristic methods including non-dominated sorting genetic algorithm and multi-objective particle swarm optimization in large-scaled problems. Finally, the results of the two algorithms are compared with respect to five different comparison metrics

    Stochastic extension of cellular manufacturing systems: a queuing-based analysis

    Get PDF
    Clustering parts and machines into part families and machine cells is a major decision in the design of cellular manufacturing systems which is defined as cell formation. This paper presents a non-linear mixed integer programming model to design cellular manufacturing systems which assumes that the arrival rate of parts into cells and machine service rate are stochastic parameters and described by exponential distribution. Uncertain situations may create a queue behind each machine; therefore, we will consider the average waiting time of parts behind each machine in order to have an efficient system. The objective function will minimize summation of idleness cost of machines, sub-contracting cost for exceptional parts, non-utilizing machine cost, and holding cost of parts in the cells. Finally, the linearized model will be solved by the Cplex solver of GAMS, and sensitivity analysis will be performed to illustrate the effectiveness of the parameters
    corecore