7,480 research outputs found

    Comparison of multimarker logistic regression models, with application to a genomewide scan of schizophrenia.

    Get PDF
    BACKGROUND: Genome-wide association studies (GWAS) are a widely used study design for detecting genetic causes of complex diseases. Current studies provide good coverage of common causal SNPs, but not rare ones. A popular method to detect rare causal variants is haplotype testing. A disadvantage of this approach is that many parameters are estimated simultaneously, which can mean a loss of power and slower fitting to large datasets.Haplotype testing effectively tests both the allele frequencies and the linkage disequilibrium (LD) structure of the data. LD has previously been shown to be mostly attributable to LD between adjacent SNPs. We propose a generalised linear model (GLM) which models the effects of each SNP in a region as well as the statistical interactions between adjacent pairs. This is compared to two other commonly used multimarker GLMs: one with a main-effect parameter for each SNP; one with a parameter for each haplotype. RESULTS: We show the haplotype model has higher power for rare untyped causal SNPs, the main-effects model has higher power for common untyped causal SNPs, and the proposed model generally has power in between the two others. We show that the relative power of the three methods is dependent on the number of marker haplotypes the causal allele is present on, which depends on the age of the mutation. Except in the case of a common causal variant in high LD with markers, all three multimarker models are superior in power to single-SNP tests.Including the adjacent statistical interactions results in lower inflation in test statistics when a realistic level of population stratification is present in a dataset.Using the multimarker models, we analyse data from the Molecular Genetics of Schizophrenia study. The multimarker models find potential associations that are not found by single-SNP tests. However, multimarker models also require stricter control of data quality since biases can have a larger inflationary effect on multimarker test statistics than on single-SNP test statistics. CONCLUSIONS: Analysing a GWAS with multimarker models can yield candidate regions which may contain rare untyped causal variants. This is useful for increasing prior odds of association in future whole-genome sequence analyses.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are

    Evaluating Learner Perceptions of Use of Simulations for New nurses – A Collaboration Between the UT SON and the Methodist Hospital

    Get PDF
    The purpose of this evaluation project was to describe the integration of simulation into a nursing internship program and to help prepare new graduate nurses for patient care. Additionally, learning styles and perceptions of active learning, collaboration among peers, ways of learning, expectation of simulation, satisfaction, self-confidence, and design of simulation were examined. [See PDF for complete abstract

    Quality Management Across the Continuum of Care in Orthopedics

    Get PDF

    Group sequential designs for stepped-wedge cluster randomised trials.

    Get PDF
    BACKGROUND/AIMS: The stepped-wedge cluster randomised trial design has received substantial attention in recent years. Although various extensions to the original design have been proposed, no guidance is available on the design of stepped-wedge cluster randomised trials with interim analyses. In an individually randomised trial setting, group sequential methods can provide notable efficiency gains and ethical benefits. We address this by discussing how established group sequential methodology can be adapted for stepped-wedge designs. METHODS: Utilising the error spending approach to group sequential trial design, we detail the assumptions required for the determination of stepped-wedge cluster randomised trials with interim analyses. We consider early stopping for efficacy, futility, or efficacy and futility. We describe first how this can be done for any specified linear mixed model for data analysis. We then focus on one particular commonly utilised model and, using a recently completed stepped-wedge cluster randomised trial, compare the performance of several designs with interim analyses to the classical stepped-wedge design. Finally, the performance of a quantile substitution procedure for dealing with the case of unknown variance is explored. RESULTS: We demonstrate that the incorporation of early stopping in stepped-wedge cluster randomised trial designs could reduce the expected sample size under the null and alternative hypotheses by up to 31% and 22%, respectively, with no cost to the trial's type-I and type-II error rates. The use of restricted error maximum likelihood estimation was found to be more important than quantile substitution for controlling the type-I error rate. CONCLUSION: The addition of interim analyses into stepped-wedge cluster randomised trials could help guard against time-consuming trials conducted on poor performing treatments and also help expedite the implementation of efficacious treatments. In future, trialists should consider incorporating early stopping of some kind into stepped-wedge cluster randomised trials according to the needs of the particular trial

    Fermion Masses in Emergent Electroweak Symmetry Breaking

    Full text link
    We consider the generation of fermion masses in an emergent model of electroweak symmetry breaking with composite W,ZW,Z gauge bosons. A universal bulk fermion profile in a warped extra dimension is used for all fermion flavors. Electroweak symmetry is broken at the UV (or Planck) scale where boundary mass terms are added to generate the fermion flavor structure. This leads to flavor-dependent nonuniversality in the gauge couplings. The effects are suppressed for the light fermion generations but are enhanced for the top quark where the ZttˉZt{\bar t} and WtbˉWt{\bar b} couplings can deviate at the 102010-20% level in the minimal setup. By the AdS/CFT correspondence our model implies that electroweak symmetry is not a fundamental gauge symmetry. Instead the Standard Model with massive fermions and W,ZW,Z gauge bosons is an effective chiral Lagrangian for some underlying confining strong dynamics at the TeV scale, where mass is generated without a Higgs mechanism.Comment: modified discussion in Sec 3.1, version published in JHE

    TSPO interacts with VDAC1 and triggers a ROS-mediated inhibition of mitochondrial quality control

    Get PDF
    The 18-kDa TSPO (translocator protein) localizes on the outer mitochondrial membrane (OMM) and participates in cholesterol transport. Here, we report that TSPO inhibits mitochondrial autophagy downstream of the PINK1-PARK2 pathway, preventing essential ubiquitination of proteins. TSPO abolishes mitochondrial relocation of SQSTM1/p62 (sequestosome 1), and consequently that of the autophagic marker LC3 (microtubule-associated protein 1 light chain 3), thus leading to an accumulation of dysfunctional mitochondria, altering the appearance of the network. Independent of cholesterol regulation, the modulation of mitophagy by TSPO is instead dependent on VDAC1 (voltage-dependent anion channel 1), to which TSPO binds, reducing mitochondrial coupling and promoting an overproduction of reactive oxygen species (ROS) that counteracts PARK2-mediated ubiquitination of proteins. These data identify TSPO as a novel element in the regulation of mitochondrial quality control by autophagy, and demonstrate the importance for cell homeostasis of its expression ratio with VDAC1
    corecore