3,176 research outputs found

    Privacy-Preserving Outsourcing of Large-Scale Nonlinear Programming to the Cloud

    Full text link
    The increasing massive data generated by various sources has given birth to big data analytics. Solving large-scale nonlinear programming problems (NLPs) is one important big data analytics task that has applications in many domains such as transport and logistics. However, NLPs are usually too computationally expensive for resource-constrained users. Fortunately, cloud computing provides an alternative and economical service for resource-constrained users to outsource their computation tasks to the cloud. However, one major concern with outsourcing NLPs is the leakage of user's private information contained in NLP formulations and results. Although much work has been done on privacy-preserving outsourcing of computation tasks, little attention has been paid to NLPs. In this paper, we for the first time investigate secure outsourcing of general large-scale NLPs with nonlinear constraints. A secure and efficient transformation scheme at the user side is proposed to protect user's private information; at the cloud side, generalized reduced gradient method is applied to effectively solve the transformed large-scale NLPs. The proposed protocol is implemented on a cloud computing testbed. Experimental evaluations demonstrate that significant time can be saved for users and the proposed mechanism has the potential for practical use.Comment: Ang Li and Wei Du equally contributed to this work. This work was done when Wei Du was at the University of Arkansas. 2018 EAI International Conference on Security and Privacy in Communication Networks (SecureComm

    Signal Propagation in Feedforward Neuronal Networks with Unreliable Synapses

    Full text link
    In this paper, we systematically investigate both the synfire propagation and firing rate propagation in feedforward neuronal network coupled in an all-to-all fashion. In contrast to most earlier work, where only reliable synaptic connections are considered, we mainly examine the effects of unreliable synapses on both types of neural activity propagation in this work. We first study networks composed of purely excitatory neurons. Our results show that both the successful transmission probability and excitatory synaptic strength largely influence the propagation of these two types of neural activities, and better tuning of these synaptic parameters makes the considered network support stable signal propagation. It is also found that noise has significant but different impacts on these two types of propagation. The additive Gaussian white noise has the tendency to reduce the precision of the synfire activity, whereas noise with appropriate intensity can enhance the performance of firing rate propagation. Further simulations indicate that the propagation dynamics of the considered neuronal network is not simply determined by the average amount of received neurotransmitter for each neuron in a time instant, but also largely influenced by the stochastic effect of neurotransmitter release. Second, we compare our results with those obtained in corresponding feedforward neuronal networks connected with reliable synapses but in a random coupling fashion. We confirm that some differences can be observed in these two different feedforward neuronal network models. Finally, we study the signal propagation in feedforward neuronal networks consisting of both excitatory and inhibitory neurons, and demonstrate that inhibition also plays an important role in signal propagation in the considered networks.Comment: 33pages, 16 figures; Journal of Computational Neuroscience (published

    Radiative Electroweak Symmetry Breaking in a Little Higgs Model

    Full text link
    We present a new Little Higgs model, motivated by the deconstruction of a five-dimensional gauge-Higgs model. The approximate global symmetry is SO(5)0×SO(5)1SO(5)_0\times SO(5)_1, breaking to SO(5)SO(5), with a gauged subgroup of [SU(2)0L×U(1)0R]×O(4)1[SU(2)_{0L}\times U(1)_{0R}]\times O(4)_1, breaking to SU(2)L×U(1)YSU(2)_L \times U(1)_Y. Radiative corrections produce an additional small vacuum misalignment, breaking the electroweak symmetry down to U(1)EMU(1)_{EM}. Novel features of this model are: the only un-eaten pseudo-Goldstone boson in the effective theory is the Higgs boson; the model contains a custodial symmetry, which ensures that T^=0\hat{T}=0 at tree-level; and the potential for the Higgs boson is generated entirely through one-loop radiative corrections. A small negative mass-squared in the Higgs potential is obtained by a cancellation between the contribution of two heavy partners of the top quark, which is readily achieved over much of the parameter space. We can then obtain both a vacuum expectation value of v=246v=246 GeV and a light Higgs boson mass, which is strongly correlated with the masses of the two heavy top quark partners. For a scale of the global symmetry breaking of f=1f=1 TeV and using a single cutoff for the fermion loops, the Higgs boson mass satisfies 120 GeV MH150\lesssim M_H\lesssim150 GeV over much of the range of parameter space. For ff raised to 10 TeV, these values increase by about 40 GeV. Effects at the ultraviolet cutoff scale may also raise the predicted values of the Higgs boson mass, but the model still favors MH200M_H\lesssim 200 GeV.Comment: 32 pages, 10 figures, JHEP style. Version accepted for publication in JHEP. Includes additional discussion of sensitivity to UV effects and fine-tuning, revised Fig. 9, added appendix and additional references

    Cycle-centrality in complex networks

    Full text link
    Networks are versatile representations of the interactions between entities in complex systems. Cycles on such networks represent feedback processes which play a central role in system dynamics. In this work, we introduce a measure of the importance of any individual cycle, as the fraction of the total information flow of the network passing through the cycle. This measure is computationally cheap, numerically well-conditioned, induces a centrality measure on arbitrary subgraphs and reduces to the eigenvector centrality on vertices. We demonstrate that this measure accurately reflects the impact of events on strategic ensembles of economic sectors, notably in the US economy. As a second example, we show that in the protein-interaction network of the plant Arabidopsis thaliana, a model based on cycle-centrality better accounts for pathogen activity than the state-of-art one. This translates into pathogen-targeted-proteins being concentrated in a small number of triads with high cycle-centrality. Algorithms for computing the centrality of cycles and subgraphs are available for download

    Recovering three-dimensional shape around a corner using ultrafast time-of-flight imaging

    Get PDF
    The recovery of objects obscured by scattering is an important goal in imaging and has been approached by exploiting, for example, coherence properties, ballistic photons or penetrating wavelengths. Common methods use scattered light transmitted through an occluding material, although these fail if the occluder is opaque. Light is scattered not only by transmission through objects, but also by multiple reflection from diffuse surfaces in a scene. This reflected light contains information about the scene that becomes mixed by the diffuse reflections before reaching the image sensor. This mixing is difficult to decode using traditional cameras. Here we report the combination of a time-of-flight technique and computational reconstruction algorithms to untangle image information mixed by diffuse reflection. We demonstrate a three-dimensional range camera able to look around a corner using diffusely reflected light that achieves sub-millimetre depth precision and centimetre lateral precision over 40 cm×40 cm×40 cm of hidden space.MIT Media Lab ConsortiumUnited States. Defense Advanced Research Projects Agency. Young Faculty AwardMassachusetts Institute of Technology. Institute for Soldier Nanotechnologies (Contract W911NF-07-D-0004

    Composite Higgs Sketch

    Full text link
    The coupling of a composite Higgs to the standard model fields can deviate substantially from the standard model values. In this case perturbative unitarity might break down before the scale of compositeness is reached, which would suggest that additional composites should lie well below this scale. In this paper we account for the presence of an additional spin 1 custodial triplet of rhos. We examine the implications of requiring perturbative unitarity up to the compositeness scale and find that one has to be close to saturating certain unitarity sum rules involving the Higgs and the rho couplings. Given these restrictions on the parameter space we investigate the main phenomenological consequences of the spin 1 triplet. We find that they can substantially enhance the Higgs di-photon rate at the LHC even with a reduced Higgs coupling to gauge bosons. The main existing LHC bounds arise from di-boson searches, especially in the experimentally clean channel where the charged rhos decay to a W-boson and a Z, which then decay leptonically. We find that a large range of interesting parameter space with 700 GeV < m(rho) < 2 TeV is currently experimentally viable.Comment: 37 pages, 12 figures; v4: sum rule corrected, conclusions unchange

    Neuropsychiatric symptoms in 921 elderly subjects with dementia: a comparison between vascular and neurodegenerative types.

    Get PDF
    Objective:  i) to describe the neuropsychiatric profile of elderly subjects with dementia by comparing vascular (VaD) and degenerative dementias, i.e. dementia with Lewy bodies (DLB) and Alzheimer’s disease (AD); ii) to assess whether the severity and type of dementia are associated with clinically relevant neuropsychiatric symptoms (CR‐NPS). Method:  One hundred and thirty‐one out‐patients with VaD, 100 with DLB and 690 with AD were studied. NPS were evaluated by the neuropsychiatric inventory (NPI). Results:  Vascular dementia had lower total and domain‐specific NPI scores and a lower frequency of CR‐NPS than AD and DLB, for which frequency of CR‐NPS increased significantly with disease severity, particularly in AD. Logistic regression analysis showed that a higher CDR score and a diagnosis of degenerative dementia were independently associated with CR‐NPS. Conclusion:  Vascular dementia is associated less with CR‐NPS than AD and DLB. Frequency of CR‐NPS increases with disease severity in AD and, to a lesser extent, in DLB

    When Anomaly Mediation is UV Sensitive

    Full text link
    Despite its successes---such as solving the supersymmetric flavor problem---anomaly mediated supersymmetry breaking is untenable because of its prediction of tachyonic sleptons. An appealing solution to this problem was proposed by Pomarol and Rattazzi where a threshold controlled by a light field deflects the anomaly mediated supersymmetry breaking trajectory, thus evading tachyonic sleptons. In this paper we examine an alternate class of deflection models where the non-supersymmetric threshold is accompanied by a heavy, instead of light, singlet. The low energy form of this model is the so-called extended anomaly mediation proposed by Nelson and Weiner, but with potential for a much higher deflection threshold. The existence of this high deflection threshold implies that the space of anomaly mediated supersymmetry breaking deflecting models is larger than previously thought.Comment: 14 pages, 1 figure (version to appear in JHEP

    UV friendly T-parity in the SU(6)/Sp(6) little Higgs model

    Full text link
    Electroweak precision tests put stringent constraints on the parameter space of little Higgs models. Tree-level exchange of TeV scale particles in a generic little Higgs model produce higher dimensional operators that make contributions to electroweak observables that are typically too large. To avoid this problem a discrete symmetry dubbed T-parity can be introduced to forbid the dangerous couplings. However, it was realized that in simple group models such as the littlest Higgs model, the implementation of T-parity in a UV completion could present some challenges. The situation is analogous to the one in QCD where the pion can easily be defined as being odd under a new Z2Z_2 symmetry in the chiral Lagrangian, but this Z2Z_2 is not a symmetry of the quark Lagrangian. In this paper we examine the possibility of implementing a T-parity in the low energy SU(6)/Sp(6)SU(6)/Sp(6) model that might be easier to realize in the UV. In our model, the T-parity acts on the low energy non-linear sigma model field in way which is different to what was originally proposed for the Littlest Higgs, and lead to a different low energy theory. In particular, the Higgs sector of this model is a inert two Higgs doublets model with an approximate custodial symmetry. We examine the contributions of the various sectors of the model to electroweak precision data, and to the dark matter abundance.Comment: 21 pages,4 figures. Clarifications added, typos corrected and references added. Published in JHE

    Low-Energy Probes of a Warped Extra Dimension

    Full text link
    We investigate a natural realization of a light Abelian hidden sector in an extended Randall-Sundrum (RS) model. In addition to the usual RS bulk we consider a second warped space containing a bulk U(1)_x gauge theory with a characteristic IR scale of order a GeV. This Abelian hidden sector can couple to the standard model via gauge kinetic mixing on a common UV brane. We show that if such a coupling induces significant mixing between the lightest U(1)_x gauge mode and the standard model photon and Z, it can also induce significant mixing with the heavier U(1)_x Kaluza-Klein (KK) modes. As a result it might be possible to probe several KK modes in upcoming fixed-target experiments and meson factories, thereby offering a new way to investigate the structure of an extra spacetime dimension.Comment: 26 pages, 1 figure, added references, corrected minor typos, same as journal versio
    corecore