259 research outputs found

    Structure of the St. Louis encephalitis virus postfusion envelope trimer

    Get PDF
    St. Louis encephalitis virus (SLEV) is a mosquito-borne flavivirus responsible for several human encephalitis outbreaks over the last 80 years. Mature flavivirus virions are coated with dimeric envelope (E) proteins that mediate attachment and fusion with host cells. E is a class II fusion protein, the hallmark of which is a distinct dimer-to-trimer rearrangement that occurs upon endosomal acidification and insertion of hydrophobic fusion peptides into the endosomal membrane. Herein, we report the crystal structure of SLEV E in the posfusion trimer conformation. The structure revealed specific features that differentiate SLEV E from trimers of related flavi- and alphaviruses. SLEV E fusion loops have distinct intermediate spacing such that they are positioned further apart than previously observed in flaviviruses but closer together than Semliki Forest virus, an alphavirus. Domains II and III (DII and DIII) of SLEV E also adopt different angles relative to DI, which suggests that the DI-DII joint may accommodate spheroidal motions. However, trimer interfaces are well conserved among flaviviruses, so it is likely the differences observed represent structural features specific to SLEV function. Analysis of surface potentials revealed a basic platform underneath flavivirus fusion loops that may interact with the anionic lipid head groups found in membranes. Taken together, these results highlight variations in E structure and assembly that may direct virus-specific interactions with host determinants to influence pathogenesis

    Findable Accessible Interoperable Re-usable (FAIR) diffraction data are coming to protein crystallography

    Get PDF
    The policy of IUCr Journals on diffraction data is defined

    “<i>I do it because they do it</i>”:social-neutralisation in information security practices of Saudi medical interns

    Get PDF
    Successful implementation of information security policies (ISP) and IT controls play an important role in safeguarding patient privacy in healthcare organizations. Our study investigates the factors that lead to healthcare practitioners' neutralisation of ISPs, leading to non-compliance. The study adopted a qualitative approach and conducted a series of semi-structured interviews with medical interns and hospital IT department managers and staff in an academic hospital in Saudi Arabia. The study's findings revealed that the MIs imitate their peers' actions and employ similar justifications when violating ISP dictates. Moreover, MI team superiors' (seniors) ISP non-compliance influence MIs tendency to invoke neutralisation techniques. We found that the trust between the medical team members is an essential social facilitator that motivates MIs to invoke neutralisation techniques to justify violating ISP policies and controls. These findings add new insights that help us to understand the relationship between the social context and neutralisation theory in triggering ISP non-compliance

    Asymmetric vestibular evoked myogenic potentials in unilateral Menière patients

    Get PDF
    Vestibular evoked myogenic potentials (VEMPs) were measured in 22 unilateral Menière patients with monaural and binaural stimulation with 250 and 500 Hz tone bursts. For all measurement situations significantly lower VEMP amplitudes were on average measured at the affected side compared to the unaffected side. Unilateral Menière patients have, in contrast to normal subjects, asymmetric VEMPs, indicating a permanently affected vestibular (most likely otolith) system at the side of hearing loss. The diagnostic value of VEMP amplitude asymmetry measurement in individual patients is low, because of the large overlap of the VEMP amplitude asymmetry range for unilateral Menière patients with that for normal subjects

    Purification and Characterization of Enterovirus 71 Viral Particles Produced from Vero Cells Grown in a Serum-Free Microcarrier Bioreactor System

    Get PDF
    [[abstract]]Background: Enterovirus 71 (EV71) infections manifest most commonly as a childhood exanthema known as hand-foot-and-mouth disease (HFMD) and can cause neurological disease during acute infection. Principal Finding: In this study, we describe the production, purification and characterization of EV71 virus produced from Vero cells grown in a five-liter serum-free bioreactor system containing 5 g/L Cytodex 1 microcarrier. The viral titer was >106 TCID50/mL by 6 days post infection when a MOI of 10?5 was used at the initial infection. Two EV71 virus fractions were separated and detected when the harvested EV71 virus concentrate was purified by sucrose gradient zonal ultracentrifugation. The EV71 viral particles detected in the 24–28% sucrose fractions had an icosahedral structure 30–31 nm in diameter and had low viral infectivity and RNA content. Three major viral proteins (VP0, VP1 and VP3) were observed by SDS-PAGE. The EV71 viral particles detected in the fractions containing 35–38% sucrose were 33–35 nm in size, had high viral infectivity and RNA content, and were composed of four viral proteins (VP1, VP2, VP3 and VP4), as shown by SDS-PAGE analyses. The two virus fractions were formalin-inactivated and induced high virus neutralizing antibody responses in mouse immunogenicity studies. Both mouse antisera recognized the immunodominant linear neutralization epitope of VP1 (residues 211–225). Conclusion:These results provide important information for cell-based EV71 vaccine development, particularly for the preparation of working standards for viral antigen quantification

    Genetic Relationship between Cocirculating Human Enteroviruses Species C

    Get PDF
    Recombination events between human enteroviruses (HEV) are known to occur frequently and to participate in the evolution of these viruses. In a previous study, we reported the isolation of a panel of viruses belonging to the Human enterovirus species C (HEV-C) that had been cocirculating in a small geographic area of Madagascar in 2002. This panel included type 2 vaccine-derived polioviruses (PV) that had caused several cases of acute flaccid paralysis in humans. Previous partial sequencing of the genome of these HEV-C isolates revealed considerable genetic diversity, mostly due to recombination. In the work presented herein, we carried out a more detailed characterization of the genomes of viruses from this collection. First, we determined the full VP1 sequence of 41 of these isolates of different types. These sequences were compared with those of HEV-C isolates obtained from other countries or in other contexts. The sequences of the Madagascan isolates of a given type formed specific clusters clearly differentiated from those formed by other strains of the same type isolated elsewhere. Second, we sequenced the entire genome of 10 viruses representing most of the lineages present in this panel. All but one of the genomes appeared to be mosaic assemblies of different genomic fragments generated by intra- and intertypic recombination. The location of the breakpoints suggested potential preferred genomic regions for recombination. Our results also suggest that recombination between type HEV-99 and other HEV-C may be quite rare. This first exhaustive genomic analysis of a panel of non-PV HEV-C cocirculating in a small human population highlights the high frequency of inter and intra-typic genetic recombination, constituting a widespread mechanism of genetic plasticity and continually shifting the HEV-C biodiversity

    Molecular Characterization and Phylogenetic Study of Coxsackievirus A24v Causing Outbreaks of Acute Hemorrhagic Conjunctivitis (AHC) in Brazil

    Get PDF
    Coxsackievirus A24 variant (CA24v) is the most prevalent viral pathogen associated with acute hemorrhagic conjunctivitis (AHC) outbreaks. Sixteen years after its first outbreak in Brazil, this agent reemerged in 2003 in Brazil, spread to nearly all states and caused outbreaks until 2005. In 2009, a new outbreak occurred in the northeast region of the country. In this study, we performed a viral isolation in cell culture and characterized clinical samples collected from patients presenting symptoms during the outbreak of 2005 in Vitória, Espírito Santo State (ES) and the outbreak of 2009 in Recife, Pernambuco State (PE). We also performed a phylogenetic analysis of worldwide strains and all meaningful Brazilian isolates since 2003.Sterile cotton swabs were used to collect eye discharges, and all 210 clinical samples were used to inoculate cell cultures. Cytopathic effects in HEp-2 cells were seen in 58 of 180 (32%) samples from Vitória and 3 of 30 (10%) samples from Recife. Phylogenetic analysis based on a fragment of the VP1 and 3C gene revealed that the CA24v causing outbreaks in Brazil during the years 2003, 2004 and 2005 evolved from Asian isolates that had caused the South Korean outbreak of AHC during the summer of 2002. However, the 2009 outbreak of AHC in Pernambuco was originated from the reintroduction of a new CA24v strain that was circulating during 2007 in Asia, where CA24v outbreaks has been continuously reported since 1970.This study is the first phylogenetic analysis of AHC outbreaks caused by CA24v in Brazil. The results showed that Asian strains of CA24v were responsible for the outbreaks since 1987 and were independently introduced to Brazil in 2003 and 2009. Phylogenetic analysis of complete VP1 gene is a useful tool for studying the epidemiology of enteroviruses associated with outbreaks

    Recombination between Polioviruses and Co-Circulating Coxsackie A Viruses: Role in the Emergence of Pathogenic Vaccine-Derived Polioviruses

    Get PDF
    Ten outbreaks of poliomyelitis caused by pathogenic circulating vaccine-derived polioviruses (cVDPVs) have recently been reported in different regions of the world. Two of these outbreaks occurred in Madagascar. Most cVDPVs were recombinants of mutated poliovaccine strains and other unidentified enteroviruses of species C. We previously reported that a type 2 cVDPV isolated during an outbreak in Madagascar was co-circulating with coxsackieviruses A17 (CA17) and that sequences in the 3′ half of the cVDPV and CA17 genomes were related. The goal of this study was to investigate whether these CA17 isolates can act as recombination partners of poliovirus and subsequently to evaluate the major effects of recombination events on the phenotype of the recombinants. We first cloned the infectious cDNA of a Madagascar CA17 isolate. We then generated recombinant constructs combining the genetic material of this CA17 isolate with that of the type 2 vaccine strain and that of the type 2 cVDPV. Our results showed that poliovirus/CA17 recombinants are viable. The recombinant in which the 3′ half of the vaccine strain genome had been replaced by that of the CA17 genome yielded larger plaques and was less temperature sensitive than its parental strains. The virus in which the 3′ portion of the cVDPV genome was replaced by the 3′ half of the CA17 genome was almost as neurovirulent as the cVDPV in transgenic mice expressing the poliovirus cellular receptor gene. The co-circulation in children and genetic recombination of viruses, differing in their pathogenicity for humans and in certain other biological properties such as receptor usage, can lead to the generation of pathogenic recombinants, thus constituting an interesting model of viral evolution and emergence

    Production of Inactivated Influenza H5N1 Vaccines from MDCK Cells in Serum-Free Medium

    Get PDF
    BACKGROUND: Highly pathogenic influenza viruses pose a constant threat which could lead to a global pandemic. Vaccination remains the principal measure to reduce morbidity and mortality from such pandemics. The availability and surging demand for pandemic vaccines needs to be addressed in the preparedness plans. This study presents an improved high-yield manufacturing process for the inactivated influenza H5N1 vaccines using Madin-Darby canine kidney (MDCK) cells grown in a serum-free (SF) medium microcarrier cell culture system. PRINCIPAL FINDING: The current study has evaluated the performance of cell adaptation switched from serum-containing (SC) medium to several commercial SF media. The selected SF medium was further evaluated in various bioreactor culture systems for process scale-up evaluation. No significant difference was found in the cell growth in different sizes of bioreactors studied. In the 7.5 L bioreactor runs, the cell concentration reached to 2.3 × 10(6) cells/mL after 5 days. The maximum virus titers of 1024 Hemagglutinin (HA) units/50 µL and 7.1 ± 0.3 × 10(8) pfu/mL were obtained after 3 days infection. The concentration of HA antigen as determined by SRID was found to be 14.1 µg/mL which was higher than those obtained from the SC medium. A mouse immunogenicity study showed that the formalin-inactivated purified SF vaccine candidate formulated with alum adjuvant could induce protective level of virus neutralization titers similar to those obtained from the SC medium. In addition, the H5N1 viruses produced from either SC or SF media showed the same antigenic reactivity with the NIBRG14 standard antisera. CONCLUSIONS: The advantages of this SF cell-based manufacturing process could reduce the animal serum contamination, the cost and lot-to-lot variation of SC medium production. This study provides useful information to manufacturers that are planning to use SF medium for cell-based influenza vaccine production

    Structure of an Engineered β-Lactamase Maltose Binding Protein Fusion Protein: Insights into Heterotropic Allosteric Regulation

    Get PDF
    Engineering novel allostery into existing proteins is a challenging endeavor to obtain novel sensors, therapeutic proteins, or modulate metabolic and cellular processes. The RG13 protein achieves such allostery by inserting a circularly permuted TEM-1 β-lactamase gene into the maltose binding protein (MBP). RG13 is positively regulated by maltose yet is, serendipitously, inhibited by Zn2+ at low µM concentration. To probe the structure and allostery of RG13, we crystallized RG13 in the presence of mM Zn2+ concentration and determined its structure. The structure reveals that the MBP and TEM-1 domains are in close proximity connected via two linkers and a zinc ion bridging both domains. By bridging both TEM-1 and MBP, Zn2+ acts to “twist tie” the linkers thereby partially dislodging a linker between the two domains from its original catalytically productive position in TEM-1. This linker 1 contains residues normally part of the TEM-1 active site including the critical β3 and β4 strands important for activity. Mutagenesis of residues comprising the crystallographically observed Zn2+ site only slightly affected Zn2+ inhibition 2- to 4-fold. Combined with previous mutagenesis results we therefore hypothesize the presence of two or more inter-domain mutually exclusive inhibitory Zn2+ sites. Mutagenesis and molecular modeling of an intact TEM-1 domain near MBP within the RG13 framework indicated a close surface proximity of the two domains with maltose switching being critically dependent on MBP linker anchoring residues and linker length. Structural analysis indicated that the linker attachment sites on MBP are at a site that, upon maltose binding, harbors both the largest local Cα distance changes and displays surface curvature changes, from concave to relatively flat becoming thus less sterically intrusive. Maltose activation and zinc inhibition of RG13 are hypothesized to have opposite effects on productive relaxation of the TEM-1 β3 linker region via steric and/or linker juxtapositioning mechanisms
    corecore