183 research outputs found
Effects of FTY720 on brain neurogenic niches in vitro and after kainic acid-induced injury
A retrospective analysis of glycol and toxic alcohol ingestion: utility of anion and osmolal gaps
<p>Abstract</p> <p>Background</p> <p>Patients ingesting ethylene glycol, isopropanol, methanol, and propylene glycol ('toxic alcohols') often present with non-specific signs and symptoms. Definitive diagnosis of toxic alcohols has traditionally been by gas chromatography (GC), a technique not commonly performed on-site in hospital clinical laboratories. The objectives of this retrospective study were: 1) to assess the diagnostic accuracy of the osmolal gap in screening for toxic alcohol ingestion and 2) to determine the common reasons other than toxic alcohol ingestion for elevated osmolal gaps.</p> <p>Methods</p> <p>Electronic medical records from an academic tertiary care medical center were searched to identify all patients in the time period from January 1, 1996 to September 1, 2010 who had serum/plasma ethanol, glucose, sodium, blood urea nitrogen, and osmolality measured simultaneously, and also all patients who had GC analysis for toxic alcohols. Detailed chart review was performed on all patients with osmolal gap of 9 or greater.</p> <p>Results</p> <p>In the study period, 20,669 patients had determination of serum/plasma ethanol and osmolal gap upon presentation to the hospitals. There were 341 patients with an osmolal gap greater than 14 (including correction for estimated contribution of ethanol) on initial presentation to the medical center. Seventy-seven patients tested positive by GC for one or more toxic alcohols; all had elevated anion gap or osmolal gap or both. Other than toxic alcohols, the most common causes for an elevated osmolal gap were recent heavy ethanol consumption with suspected alcoholic ketoacidosis, renal failure, shock, and recent administration of mannitol. Only 9 patients with osmolal gap greater than 50 and no patients with osmolal gap greater than 100 were found to be negative for toxic alcohols.</p> <p>Conclusions</p> <p>Our study concurs with other investigations that show that osmolal gap can be a useful diagnostic test in conjunction with clinical history and physical examination.</p
A Conserved Role for Syndecan Family Members in the Regulation of Whole-Body Energy Metabolism
Syndecans are a family of type-I transmembrane proteins that are involved in cell-matrix adhesion, migration, neuronal development, and inflammation. Previous quantitative genetic studies pinpointed Drosophila Syndecan (dSdc) as a positional candidate gene affecting variation in fat storage between two Drosophila melanogaster strains. Here, we first used quantitative complementation tests with dSdc mutants to confirm that natural variation in this gene affects variability in Drosophila fat storage. Next, we examined the effects of a viable dSdc mutant on Drosophila whole-body energy metabolism and associated traits. We observed that young flies homozygous for the dSdc mutation had reduced fat storage and slept longer than homozygous wild-type flies. They also displayed significantly reduced metabolic rate, lower expression of spargel (the Drosophila homologue of PGC-1), and reduced mitochondrial respiration. Compared to control flies, dSdc mutants had lower expression of brain insulin-like peptides, were less fecund, more sensitive to starvation, and had reduced life span. Finally, we tested for association between single nucleotide polymorphisms (SNPs) in the human SDC4 gene and variation in body composition, metabolism, glucose homeostasis, and sleep traits in a cohort of healthy early pubertal children. We found that SNP rs4599 was significantly associated with resting energy expenditure (P = 0.001 after Bonferroni correction) and nominally associated with fasting glucose levels (P = 0.01) and sleep duration (P = 0.044). On average, children homozygous for the minor allele had lower levels of glucose, higher resting energy expenditure, and slept shorter than children homozygous for the common allele. We also observed that SNP rs1981429 was nominally associated with lean tissue mass (P = 0.035) and intra-abdominal fat (P = 0.049), and SNP rs2267871 with insulin sensitivity (P = 0.037). Collectively, our results in Drosophila and humans argue that syndecan family members play a key role in the regulation of body metabolism
Reactive astrocytes undergo M1 microglia/macrohpages-induced necroptosis in spinal cord injury
The supernatural characters and powers of sacred trees in the Holy Land
This article surveys the beliefs concerning the supernatural characteristics and powers of sacred trees in Israel; it is based on a field study as well as a survey of the literature and includes 118 interviews with Muslims and Druze. Both the Muslims and Druze in this study attribute supernatural dimensions to sacred trees which are directly related to ancient, deep-rooted pagan traditions. The Muslims attribute similar divine powers to sacred trees as they do to the graves of their saints; the graves and the trees are both considered to be the abode of the soul of a saint which is the source of their miraculous powers. Any violation of a sacred tree would be strictly punished while leaving the opportunity for atonement and forgiveness. The Druze, who believe in the transmigration of souls, have similar traditions concerning sacred trees but with a different religious background. In polytheistic religions the sacred grove/forest is a centre of the community's official worship; any violation of the trees is regarded as a threat to the well being of the community. Punishments may thus be collective. In the monotheistic world (including Christianity, Islam and Druze) the pagan worship of trees was converted into the worship/adoration of saints/prophets; it is not a part of the official religion but rather a personal act and the punishments are exerted only on the violating individual
Genome-wide association and transcriptome studies identify target genes and risk loci for breast cancer
Genome-wide association studies (GWAS) have identified more than 170 breast cancer susceptibility loci. Here we hypothesize that some risk-associated variants might act in non-breast tissues, specifically adipose tissue and immune cells from blood and spleen. Using expression quantitative trait loci (eQTL) reported in these tissues, we identify 26 previously unreported, likely target genes of overall breast cancer risk variants, and 17 for estrogen receptor (ER)-negative breast cancer, several with a known immune function. We determine the directional effect of gene expression on disease risk measured based on single and multiple eQTL. In addition, using a gene-based test of association that considers eQTL from multiple tissues, we identify seven (and four) regions with variants associated with overall (and ER-negative) breast cancer risk, which were not reported in previous GWAS. Further investigation of the function of the implicated genes in breast and immune cells may provide insights into the etiology of breast cancer.</p
Leukodystrophies: a proposed classification system based on pathological changes and pathogenetic mechanisms
Leukodystrophies are genetically determined disorders characterized by the selective involvement of the central nervous system white matter. Onset may be at any age, from prenatal life to senescence. Many leukodystrophies are degenerative in nature, but some only impair white matter function. The clinical course is mostly progressive, but may also be static or even improving with time. Progressive leukodystrophies are often fatal, and no curative treatment is known. The last decade has witnessed a tremendous increase in the number of defined leukodystrophies also owing to a diagnostic approach combining magnetic resonance imaging pattern recognition and next generation sequencing. Knowledge on white matter physiology and pathology has also dramatically built up. This led to the recognition that only few leukodystrophies are due to mutations in myelin- or oligodendrocyte-specific genes, and many are rather caused by defects in other white matter structural components, including astrocytes, microglia, axons and blood vessels. We here propose a novel classification of leukodystrophies that takes into account the primary involvement of any white matter component. Categories in this classification are the myelin disorders due to a primary defect in oligodendrocytes or myelin (hypomyelinating and demyelinating leukodystrophies, leukodystrophies with myelin vacuolization); astrocytopathies; leuko-axonopathies; microgliopathies; and leuko-vasculopathies. Following this classification, we illustrate the neuropathology and disease mechanisms of some leukodystrophies taken as example for each category. Some leukodystrophies fall into more than one category. Given the complex molecular and cellular interplay underlying white matter pathology, recognition of the cellular pathology behind a disease becomes crucial in addressing possible treatment strategies
M2 microglia and macrophages drive oligodendrocyte differentiation during CNS remyelination
The lack of therapies for progressive multiple sclerosis highlights the need to understand the regenerative process of remyelination that can follow CNS demyelination. This involves an innate immune response consisting of microglia/macrophages, which can be polarized to distinct functional phenotypes: proinflammatory (M1) or anti-inflammatory/immunoregulatory (M2). Here we show that a switch from an M1- to M2-dominant response occurred within microglia and peripherally-derived macrophages as remyelination started. Oligodendrocyte differentiation was enhanced in vitro with M2 conditioned media, and impaired in vivo following intra-lesional M2 depletion. M2 densities were increased in lesions of aged mice in which remyelination was enhanced by parabiotic coupling to a younger animal, and in MS lesions that normally show remyelination. Blocking M2-derived activin-A inhibited oligodendrocyte differentiation during remyelination in cerebellar slice cultures. Our results therefore show that M2 polarization is essential for efficient remyelination and identify activin-A as a novel therapeutic target for CNS regeneration
Effect of local weather on butterfly flight behaviour, movement, and colonization: significance for dispersal under climate change
- …
