133 research outputs found
PENGARUH PENERAPAN MODEL LEARNING CYCLE 7E DENGAN MEDIA KOTAK DADU TERHADAP HASIL BELAJAR BAHASA INDONESIA
Tujuan dilaksanakan penelitian untuk mengetahui pengaruh penerapan model Learning Cycle 7e dengan media kotak dadu bahasa Indonesia kelas VIII SMPN 5 Wonomulyo. Populasi penelitian ekesperimen ini adalah seluruh kelas VIII SMPN 5 Wonomulyo yaitu 127 orang, yang terdiri dari lima kelas. Sampel penelitian yaitu Kelas VIII A 23 orang dan kelas VIII B 24 orang dengan menggunakan instrumen tes dan nontes. Analisis statistik deskriptif dan infrensial adalah teknik yang digunakan dalam menganalisis hasil penelitian. Hasil analisis inferensial di kelas kontrol didapatkan hasil p-value = 0,200 sedangkan untuk uji normalitas di kelas eksperimen didapatkan hasil p-value = 0,200 Kedua p-value > α = 0,05 sehingga simpulan yang ditemukan adalah data hasil belajar siswa di kedua kelas didapatkan dari populasi yang berdistribusi normal dan signifikansi 0,314 > 0,05 maka populasinya homogen. Kemudian hasil uji t menunjukkan sig 0,006 < 0,05 maka terjadi penolakan terhadap H0 dan menerima H1. Sehingga kesimpulan dari penelitian ini yaitu penerapan model Learning Cycle 7e dengan media kotak dadu bahasa Indonesia berpengaruh terhadap terhadap hasil belajar siswa kelas VIII pada SMPN 5 Wonomulyo Kabupaten Polewali Mandar
The relevance of outsourcing and leagile strategies in performance optimization of an integrated process planning and scheduling
Over the past few years growing global competition has forced the manufacturing industries to upgrade their old production strategies with the modern day approaches. As a result, recent interest has been developed towards finding an appropriate policy that could enable them to compete with others, and facilitate them to emerge as a market winner. Keeping in mind the abovementioned facts, in this paper the authors have proposed an integrated process planning and scheduling model inheriting the salient features of outsourcing, and leagile principles to compete in the existing market scenario. The paper also proposes a model based on leagile principles, where the integrated planning management has been practiced. In the present work a scheduling problem has been considered and overall minimization of makespan has been aimed. The paper shows the relevance of both the strategies in performance enhancement of the industries, in terms of their reduced makespan. The authors have also proposed a new hybrid Enhanced Swift Converging Simulated Annealing (ESCSA) algorithm, to solve the complex real-time scheduling problems. The proposed algorithm inherits the prominent features of the Genetic Algorithm (GA), Simulated Annealing (SA), and the Fuzzy Logic Controller (FLC). The ESCSA algorithm reduces the makespan significantly in less computational time and number of iterations. The efficacy of the proposed algorithm has been shown by comparing the results with GA, SA, Tabu, and hybrid Tabu-SA optimization methods
Nucleocytoplasmic transport: a thermodynamic mechanism
The nuclear pore supports molecular communication between cytoplasm and
nucleus in eukaryotic cells. Selective transport of proteins is mediated by
soluble receptors, whose regulation by the small GTPase Ran leads to cargo
accumulation in, or depletion from the nucleus, i.e., nuclear import or nuclear
export. We consider the operation of this transport system by a combined
analytical and experimental approach. Provocative predictions of a simple model
were tested using cell-free nuclei reconstituted in Xenopus egg extract, a
system well suited to quantitative studies. We found that accumulation capacity
is limited, so that introduction of one import cargo leads to egress of
another. Clearly, the pore per se does not determine transport directionality.
Moreover, different cargo reach a similar ratio of nuclear to cytoplasmic
concentration in steady-state. The model shows that this ratio should in fact
be independent of the receptor-cargo affinity, though kinetics may be strongly
influenced. Numerical conservation of the system components highlights a
conflict between the observations and the popular concept of transport cycles.
We suggest that chemical partitioning provides a framework to understand the
capacity to generate concentration gradients by equilibration of the
receptor-cargo intermediary.Comment: in press at HFSP Journal, vol 3 16 text pages, 1 table, 4 figures,
plus Supplementary Material include
The Role of Medical Affairs in Health Outcomes Data Generation and Communication
Health economics and outcomes research (HEOR) is a growing field that provides important information for making healthcare coverage and access decisions. As a scientific discipline that quantifies the economic, humanistic and clinical outcomes of medical technology, HEOR helps pharmaceutical and device manufacturers communicate the value of their innovations to stakeholders.
In this webinar, we explore relevant, updated content about the intersection between HEOR and Medical Affairs with Dr. Ahmad B. Naim, MD, Vice President, US Medical Affairs, Incyte Corporation. The need to demonstrate the value of products to multiple stakeholders in a dynamic healthcare landscape has driven an increasing intersection between traditional HEOR and Medical Affairs functions in order to generate strategic evidence and value communication throughout the product lifecycle.
Presentation: 59:3
Quantifying Morphological Evolution from Low to High Redshifts
Establishing the morphological history of ordinary galaxies was one of the original goals for the Hubble Space Telescope, and remarkable progress toward achieving this this goal has been made. How much of this progress has been at the expense of the Hubble sequence? As we probe further out in redshift space, it seems time to re-examine the underlying significance of Hubble's tuning fork in light of the the spectacular and often bizarre morphological characteristics of high redshift galaxies. The aim of this review is to build a morphological bridge between high-redshift and low-redshift galaxy populations, by using quantitative morphological measures to determine the maximum redshift for which the Hubble sequence provides a meaningful description of the galaxy population. I will outline the various techniques used to quantify high-redshift galaxy morphology, highlight the aspects of the Hubble sequence being probed by these techniques, and indicate what is getting left behind. I will argue that at higher redshifts new techniques (and new ideas) that place less emphasis on classical morphology and more emphasis on the link between morphology and resolved stellar populations are needed in order to probe the evolutionary history of high-redshift galaxies
Replication intermediates that escape Dna2 activity are processed by Holliday junction resolvase Yen1
Cells have evolved mechanisms to protect, restart and repair perturbed replication forks, allowing full genome duplication, even under replication stress. Interrogating the interplay between nuclease-helicase Dna2 and Holliday junction (HJ) resolvase Yen1, we find the Dna2 helicase activity acts parallel to homologous recombination (HR) in promoting DNA replication and chromosome detachment at mitosis after replication fork stalling. Yen1, but not the HJ resolvases Slx1-Slx4 and Mus81-Mms4, safeguards chromosome segregation by removing replication intermediates that escape Dna2. Post-replicative DNA damage checkpoint activation in Dna2 helicase-defective cells causes terminal G2/M arrest by precluding Yen1-dependent repair, whose activation requires progression into anaphase. These findings explain the exquisite replication stress sensitivity of Dna2 helicase-defective cells, and identify a non-canonical role for Yen1 in the processing of replication intermediates that is distinct from HJ resolution. The involvement of Dna2 helicase activity in completing replication may have implications for DNA2-associated pathologies, including cancer and Seckel syndrome
Underwater image quality enhancement through composition of dual-intensity images and Rayleigh-stretching
Towards reconciling structure and function in the nuclear pore complex
The spatial separation between the cytoplasm and the cell nucleus necessitates the continuous exchange of macromolecular cargo across the double-membraned nuclear envelope. Being the only passageway in and out of the nucleus, the nuclear pore complex (NPC) has the principal function of regulating the high throughput of nucleocytoplasmic transport in a highly selective manner so as to maintain cellular order and function. Here, we present a retrospective review of the evidence that has led to the current understanding of both NPC structure and function. Looking towards the future, we contemplate on how various outstanding effects and nanoscopic characteristics ought to be addressed, with the goal of reconciling structure and function into a single unified picture of the NPC
Association of risk factors with smoking during pregnancy among women of childbearing age: an epidemiological field study in Turkey
Systematic Review of Potential Health Risks Posed by Pharmaceutical, Occupational and Consumer Exposures to Metallic and Nanoscale Aluminum, Aluminum Oxides, Aluminum Hydroxide and Its Soluble Salts
Aluminum (Al) is a ubiquitous substance encountered both naturally (as the third most abundant element) and intentionally (used in water, foods, pharmaceuticals, and vaccines); it is also present in ambient and occupational airborne particulates. Existing data underscore the importance of Al physical and chemical forms in relation to its uptake, accumulation, and systemic bioavailability. The present review represents a systematic examination of the peer-reviewed literature on the adverse health effects of Al materials published since a previous critical evaluation compiled by Krewski et al. (2007).
Challenges encountered in carrying out the present review reflected the experimental use of different physical and chemical Al forms, different routes of administration, and different target organs in relation to the magnitude, frequency, and duration of exposure. Wide variations in diet can result in Al intakes that are often higher than the World Health Organization provisional tolerable weekly intake (PTWI), which is based on studies with Al citrate. Comparing daily dietary Al exposures on the basis of “total Al”assumes that gastrointestinal bioavailability for all dietary Al forms is equivalent to that for Al citrate, an approach that requires validation. Current occupational exposure limits (OELs) for identical Al substances vary as much as 15-fold.
The toxicity of different Al forms depends in large measure on their physical behavior and relative solubility in water. The toxicity of soluble Al forms depends upon the delivered dose of Al+ 3 to target tissues. Trivalent Al reacts with water to produce bidentate superoxide coordination spheres [Al(O2)(H2O4)+ 2 and Al(H2O)6 + 3] that after complexation with O2•−, generate Al superoxides [Al(O2•)](H2O5)]+ 2. Semireduced AlO2• radicals deplete mitochondrial Fe and promote generation of H2O2, O2 • − and OH•. Thus, it is the Al+ 3-induced formation of oxygen radicals that accounts for the oxidative damage that leads to intrinsic apoptosis. In contrast, the toxicity of the insoluble Al oxides depends primarily on their behavior as particulates.
Aluminum has been held responsible for human morbidity and mortality, but there is no consistent and convincing evidence to associate the Al found in food and drinking water at the doses and chemical forms presently consumed by people living in North America and Western Europe with increased risk for Alzheimer\u27s disease (AD). Neither is there clear evidence to show use of Al-containing underarm antiperspirants or cosmetics increases the risk of AD or breast cancer. Metallic Al, its oxides, and common Al salts have not been shown to be either genotoxic or carcinogenic. Aluminum exposures during neonatal and pediatric parenteral nutrition (PN) can impair bone mineralization and delay neurological development. Adverse effects to vaccines with Al adjuvants have occurred; however, recent controlled trials found that the immunologic response to certain vaccines with Al adjuvants was no greater, and in some cases less than, that after identical vaccination without Al adjuvants.
The scientific literature on the adverse health effects of Al is extensive. Health risk assessments for Al must take into account individual co-factors (e.g., age, renal function, diet, gastric pH). Conclusions from the current review point to the need for refinement of the PTWI, reduction of Al contamination in PN solutions, justification for routine addition of Al to vaccines, and harmonization of OELs for Al substances
- …
