82 research outputs found
Considerations For Implementing a Telerehabilitation Treatment Program For Individuals With Chronic Aphasia
The purpose of this research project is to identify the considerations that speech-language pathologists (SLPs) need to review before beginning to use telerehabilitation services to treat patients with chronic aphasia. This research will specifically target therapy treatments for patients with chronic aphasia and the technology adaptations and adjustments necessary for this population. This research project includes a systematic literature review as well as an in-service presentation. As telerehabilitation will continue to develop and grow, practicing SLPs need to have a foundational understanding of what teletherapy is, the patients suitable for services, and the benefits it has the potential to provide. This research project serves to provide SLPs with the foundational information necessary when beginning to learn about telerehabilitation services
Plasma carotenoids are associated with socioeconomic status in an urban Indigenous population: an observational study
<p>Abstract</p> <p>Background</p> <p>Indigenous Australians experience poorer health than other Australians. Poor diet may contribute to this, and be related to their generally lower socioeconomic status (SES). Even within Indigenous populations, SES may be important. Our aim was to identify factors associated with plasma carotenoids as a marker of fruit and vegetable intake among urban dwelling Indigenous Australians, with a particular focus on SES.</p> <p>Methods</p> <p>Cross sectional study in urban dwelling Indigenous Australians participating in the DRUID (Darwin Region Urban Indigenous Diabetes) Study. An SES score, based on education, employment, household size, home ownership and income was computed and plasma carotenoids measured by high performance liquid chromatography in 897 men and women aged 15 - 81 years (mean 36, standard deviation 15). Linear regression analysis was used to determine the relationship between SES and plasma carotenoids, adjusting for demographic, health and lifestyle variables, including frequency of intakes of food groups (fruit, vegetables, takeaway foods, snacks and fruit/vegetable juice).</p> <p>Results</p> <p>SES was positively associated with plasma concentrations of lutein/zeaxanthin (p trend <0.001), lycopene (p trend = 0.001), α- and ß-carotene (p trend = 0.019 and 0.026 respectively), after adjusting for age, sex, glucose tolerance status, smoking, alcohol use, hypercholesterolemia, dyslipidemia, self-reported health, waist to hip ratio and body mass index. These associations remained after adjustment for self-reported frequency of intake of fruit, vegetables, takeaway foods and fruit juice, which all showed some association with plasma carotenoids. Even in the highest SES quintile, concentrations of all carotenoids (except lycopene) were lower than the mean concentrations in a non-Indigenous population.</p> <p>Conclusions</p> <p>Even within urban Indigenous Australians, higher SES was associated with higher concentrations of plasma carotenoids. Low plasma carotenoids have been linked with poor health outcomes; increasing accessibility of fruit and vegetables, as well as reducing smoking rates could increase concentrations and otherwise improve health, but our results suggest there may be additional factors contributing to lower carotenoid concentrations in Indigenous Australians.</p
Patterns of soil-transmitted helminth infection and impact of four-monthly albendazole treatments in preschool children from semi-urban communities in Nigeria: a double-blind placebo-controlled randomised trial
Background
Children aged between one and five years are particularly vulnerable to disease caused by soil-transmitted helminths (STH). Periodic deworming has been shown to improve growth, micronutrient status (iron and vitamin A), and motor and language development in preschool children and justifies the inclusion of this age group in deworming programmes. Our objectives were to describe the prevalence and intensity of STH infection and to investigate the effectiveness of repeated four-monthly albendazole treatments on STH infection in children aged one to four years.
Methods
The study was carried out in four semi-urban villages situated near Ile-Ife, Osun State, Nigeria. The study was a double-blind placebo-controlled randomised trial. Children aged one to four years were randomly assigned to receive either albendazole or placebo every four months for 12 months with a follow-up at 14 months.
Results
The results presented here revealed that 50% of the preschool children in these semi-urban communities were infected by one or more helminths, the most prevalent STH being Ascaris lumbricoides (47.6%). Our study demonstrated that repeated four-monthly anthelminthic treatments with albendazole were successful in reducing prevalence and intensity of A. lumbricoides infections. At the end of the follow-up period, 12% and 43% of the children were infected with A. lumbricoides and mean epg was 117 (S.E. 50) and 1740 (S.E. 291) in the treatment and placebo groups respectively compared to 45% and 45% of the children being infected with Ascaris and mean epg being 1095 (S.E. 237) and 1126 (S.E. 182) in the treatment and placebo group respectively at baseline.
Conclusion
Results from this study show that the moderate prevalence and low intensity of STH infection in these preschool children necessitates systematic treatment of the children in child health programmes
Scintillation light detection in the 6-m drift-length ProtoDUNE Dual Phase liquid argon TPC
DUNE is a dual-site experiment for long-baseline neutrino oscillation studies, neutrino astrophysics and nucleon decay searches. ProtoDUNE Dual Phase (DP) is a 6 × 6 × 6 m 3 liquid argon time-projection-chamber (LArTPC) that recorded cosmic-muon data at the CERN Neutrino Platform in 2019-2020 as a prototype of the DUNE Far Detector. Charged particles propagating through the LArTPC produce ionization and scintillation light. The scintillation light signal in these detectors can provide the trigger for non-beam events. In addition, it adds precise timing capabilities and improves the calorimetry measurements. In ProtoDUNE-DP, scintillation and electroluminescence light produced by cosmic muons in the LArTPC is collected by photomultiplier tubes placed up to 7 m away from the ionizing track. In this paper, the ProtoDUNE-DP photon detection system performance is evaluated with a particular focus on the different wavelength shifters, such as PEN and TPB, and the use of Xe-doped LAr, considering its future use in giant LArTPCs. The scintillation light production and propagation processes are analyzed and a comparison of simulation to data is performed, improving understanding of the liquid argon properties
Supernova neutrino burst detection with the Deep Underground Neutrino Experiment
The Deep Underground Neutrino Experiment (DUNE), a 40-kton underground liquid argon time projection chamber experiment, will be sensitive to the electron-neutrino flavor component of the burst of neutrinos expected from the next Galactic core-collapse supernova. Such an observation will bring unique insight into the astrophysics of core collapse as well as into the properties of neutrinos. The general capabilities of DUNE for neutrino detection in the relevant few- to few-tens-of-MeV neutrino energy range will be described. As an example, DUNE's ability to constrain the νe spectral parameters of the neutrino burst will be considered
A 12 week longitudinal study of microbial translocation and systemic inflammation in undernourished HIV-infected Zambians initiating antiretroviral therapy
Neutrino interaction classification with a convolutional neural network in the DUNE far detector
The Deep Underground Neutrino Experiment is a next-generation neutrino oscillation experiment that aims to measure CP-violation in the neutrino sector as part of a wider physics program. A deep learning approach based on a convolutional neural network has been developed to provide highly efficient and pure selections of electron neutrino and muon neutrino charged-current interactions. The electron neutrino (antineutrino) selection efficiency peaks at 90% (94%) and exceeds 85% (90%) for reconstructed neutrino energies between 2–5 GeV. The muon neutrino (antineutrino) event selection is found to have a maximum efficiency of 96% (97%) and exceeds 90% (95%) efficiency for reconstructed neutrino energies above 2 GeV. When considering all electron neutrino and antineutrino interactions as signal, a selection purity of 90% is achieved. These event selections are critical to maximize the sensitivity of the experiment to CP-violating effects
Volume III DUNE far detector technical coordination
The preponderance of matter over antimatter in the early universe, the dynamics of the supernovae that produced the heavy elements necessary for life, and whether protons eventually decay—these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our universe, its current state, and its eventual fate. The Deep Underground Neutrino Experiment (DUNE) is an international world-class experiment dedicated to addressing these questions as it searches for leptonic charge-parity symmetry violation, stands ready to capture supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the standard model. The DUNE far detector technical design report (TDR) describes the DUNE physics program and the technical designs of the single- and dual-phase DUNE liquid argon TPC far detector modules. Volume III of this TDR describes how the activities required to design, construct, fabricate, install, and commission the DUNE far detector modules are organized and managed. This volume details the organizational structures that will carry out and/or oversee the planned far detector activities safely, successfully, on time, and on budget. It presents overviews of the facilities, supporting infrastructure, and detectors for context, and it outlines the project-related functions and methodologies used by the DUNE technical coordination organization, focusing on the areas of integration engineering, technical reviews, quality assurance and control, and safety oversight. Because of its more advanced stage of development, functional examples presented in this volume focus primarily on the single-phase (SP) detector module
Separation of track- and shower-like energy deposits in ProtoDUNE-SP using a convolutional neural network
Liquid argon time projection chamber detector technology provides high spatial and calorimetric resolutions on the charged particles traversing liquid argon. As a result, the technology has been used in a number of recent neutrino experiments, and is the technology of choice for the Deep Underground Neutrino Experiment (DUNE). In order to perform high precision measurements of neutrinos in the detector, final state particles need to be effectively identified, and their energy accurately reconstructed. This article proposes an algorithm based on a convolutional neural network to perform the classification of energy deposits and reconstructed particles as track-like or arising from electromagnetic cascades. Results from testing the algorithm on experimental data from ProtoDUNE-SP, a prototype of the DUNE far detector, are presented. The network identifies track- and shower-like particles, as well as Michel electrons, with high efficiency. The performance of the algorithm is consistent between experimental data and simulation
- …
