1,985 research outputs found
The Organic Research Centre; Elm Farm Bulletin 84 July 2006
Regular bulletin with technical updates of the Organic Advisory Service
Issue contains:
Battling on for Avian Flu preventive vaccination; Organic Colombian Blacktail eggs;
UK Co-existence - GMOand non-GMO crops; Aspects of Poultry Behaviour; CAP in the service of biodiversity; Seeing the Wood, the Trees and the Catch 22; Beware of organic market "statistics"; A central role in energy review
Elm Farm Organic Research Centre Bulletin 83 April 2006
Regular bulleting with technical updates from Organic Advisory Service
Issue contains:
Testing for Tolerance - a pragmatic view GM Debate
Vaccination nation - to jab or not to jab Future shape of OCIS
Evolutionary wheat makes the grade? NIAB tracks health of organic cereal seed
Stopping erosion of soil quality - the organic way
Care needed to halt butterfly collapse
Aspects of poultry behaviour: How free range is free range?
On choosing an organic wheat A local education challenge
New Wakelyns Science Building Organic vegetable market growt
A four gene signature of chromosome instability (CIN4) predicts for benefit from taxanes in the NCIC-CTG MA21 clinical trial.
Recent evidence demonstrated CIN4 as a predictive marker of anthracycline benefit in early breast cancer. An analysis of the NCIC CTG MA.21 clinical trial was performed to test the role of existing CIN gene expression signatures as prognostic and predictive markers in the context of taxane based chemotherapy.RNA was extracted from patients in cyclophosphamide, epirubicin and flurouracil (CEF) and epirubicin, cyclophosphamide and paclitaxel (EC/T) arms of the NCIC CTG MA.21 trial and analysed using NanoString technology.After multivariate analysis both high CIN25 and CIN70 score was significantly associated with an increased in RFS (HR 1.76, 95%CI 1.07-2.86, p=0.0018 and HR 1.59, 95%CI 1.12-2.25, p=0.0096 respectively). Patients whose tumours had low CIN4 gene expression scores were associated with an increase in RFS (HR: 0.64, 95% CI 0.39-1.03, p=0.06) when treated with EC/T compared to patients treated with CEF.In conclusion we have demonstrated CIN25 and CIN70 as prognostic markers in breast cancer and that CIN4 is a potential predictive maker of benefit from taxane treatment
Normal modes and discovery of high-order cross-frequencies in the DBV white dwarf GD 358
We present a detailed mode identification performed on the 1994 Whole Earth Telescope (WET) run on GD 358. The results are compared with that obtained for the same star from the 1990 WET data. The two temporal spectra show very few qualitative differences, although amplitude changes are seen in most modes, including the disappearance of the mode identified as k=14 in the 1990 data. The excellent coverage and signal-to-noise ratio obtained during the 1994 run lead to the secure identification of combination frequencies up to fourth order, i.e. peaks that are sums or differences of up to four parent frequencies, including a virtually complete set of second-order frequencies, as expected from harmonic distortion. We show how the third-order frequencies are expected to affect the triplet structure of the normal modes by back-interacting with them. Finally, a search for ℓ=2 modes was unsuccessful, not verifying the suspicion that such modes had been uncovered in the 1990 data set
Heralded generation of entangled photon pairs
Entangled photons are a crucial resource for quantum communication and linear
optical quantum computation. Unfortunately, the applicability of many
photon-based schemes is limited due to the stochastic character of the photon
sources. Therefore, a worldwide effort has focused in overcoming the limitation
of probabilistic emission by generating two-photon entangled states conditioned
on the detection of auxiliary photons. Here we present the first heralded
generation of photon states that are maximally entangled in polarization with
linear optics and standard photon detection from spontaneous parametric
down-conversion. We utilize the down-conversion state corresponding to the
generation of three photon pairs, where the coincident detection of four
auxiliary photons unambiguously heralds the successful preparation of the
entangled state. This controlled generation of entangled photon states is a
significant step towards the applicability of a linear optics quantum network,
in particular for entanglement swapping, quantum teleportation, quantum
cryptography and scalable approaches towards photonics-based quantum computing
Capturing the essence of folding and functions of biomolecules using Coarse-Grained Models
The distances over which biological molecules and their complexes can
function range from a few nanometres, in the case of folded structures, to
millimetres, for example during chromosome organization. Describing phenomena
that cover such diverse length, and also time scales, requires models that
capture the underlying physics for the particular length scale of interest.
Theoretical ideas, in particular, concepts from polymer physics, have guided
the development of coarse-grained models to study folding of DNA, RNA, and
proteins. More recently, such models and their variants have been applied to
the functions of biological nanomachines. Simulations using coarse-grained
models are now poised to address a wide range of problems in biology.Comment: 37 pages, 8 figure
Genome-wide signatures of complex introgression and adaptive evolution in the big cats.
The great cats of the genus Panthera comprise a recent radiation whose evolutionary history is poorly understood. Their rapid diversification poses challenges to resolving their phylogeny while offering opportunities to investigate the historical dynamics of adaptive divergence. We report the sequence, de novo assembly, and annotation of the jaguar (Panthera onca) genome, a novel genome sequence for the leopard (Panthera pardus), and comparative analyses encompassing all living Panthera species. Demographic reconstructions indicated that all of these species have experienced variable episodes of population decline during the Pleistocene, ultimately leading to small effective sizes in present-day genomes. We observed pervasive genealogical discordance across Panthera genomes, caused by both incomplete lineage sorting and complex patterns of historical interspecific hybridization. We identified multiple signatures of species-specific positive selection, affecting genes involved in craniofacial and limb development, protein metabolism, hypoxia, reproduction, pigmentation, and sensory perception. There was remarkable concordance in pathways enriched in genomic segments implicated in interspecies introgression and in positive selection, suggesting that these processes were connected. We tested this hypothesis by developing exome capture probes targeting ~19,000 Panthera genes and applying them to 30 wild-caught jaguars. We found at least two genes (DOCK3 and COL4A5, both related to optic nerve development) bearing significant signatures of interspecies introgression and within-species positive selection. These findings indicate that post-speciation admixture has contributed genetic material that facilitated the adaptive evolution of big cat lineages
Testing foundations of quantum mechanics with photons
The foundational ideas of quantum mechanics continue to give rise to
counterintuitive theories and physical effects that are in conflict with a
classical description of Nature. Experiments with light at the single photon
level have historically been at the forefront of tests of fundamental quantum
theory and new developments in photonics engineering continue to enable new
experiments. Here we review recent photonic experiments to test two
foundational themes in quantum mechanics: wave-particle duality, central to
recent complementarity and delayed-choice experiments; and Bell nonlocality
where recent theoretical and technological advances have allowed all
controversial loopholes to be separately addressed in different photonics
experiments.Comment: 10 pages, 5 figures, published as a Nature Physics Insight review
articl
Past Achievements and Future Challenges in 3D Photonic Metamaterials
Photonic metamaterials are man-made structures composed of tailored micro- or
nanostructured metallo-dielectric sub-wavelength building blocks that are
densely packed into an effective material. This deceptively simple, yet
powerful, truly revolutionary concept allows for achieving novel, unusual, and
sometimes even unheard-of optical properties, such as magnetism at optical
frequencies, negative refractive indices, large positive refractive indices,
zero reflection via impedance matching, perfect absorption, giant circular
dichroism, or enhanced nonlinear optical properties. Possible applications of
metamaterials comprise ultrahigh-resolution imaging systems, compact
polarization optics, and cloaking devices. This review describes the
experimental progress recently made fabricating three-dimensional metamaterial
structures and discusses some remaining future challenges
- …
