17,967 research outputs found
Synthesis, characterization, and biocompatible properties of alanine-grafted chitosan copolymers
In order to overcome major problems regarding the lack of affinity to solvents and limited reactivity of the free amines of chitosan, introduction of appropriate spacer arms having terminal amine function is considered of interest. L-Alanine-N-carboxyanhydride was grafted onto chitosan via anionic ring-opening polymerization. The chemical and structural characterizations of L-alanine-grafted chitosan (Ala-g-Cts) were confirmed through Fourier transform infrared spectroscopy and proton nuclear magnetic resonance spectroscopy ((1)H NMR). In addition, the viscoelastic properties of Ala-g-Cts were examined by means of a rotational viscometer, and thermal analysis was carried out with a thermogravimetric analyzer and differential scanning calorimetry. Morphological changes in the chitosan L-alanine moiety were determined by x-ray diffraction. To determine the feasibility of using these films as biomedical materials, we investigated the effects of their L-alanine content on physical and mechanical properties. The biodegradation results of crosslinked Ala-g-Cts films were evaluated in phosphate-buffered solution containing lysozyme at 37℃. Proliferation of MC3T3-E1 cells on crosslinked Ala-g-Cts films was also investigated with use of the CCK-8 assay
A Reaction Between High Mn-High Al Steel and CaO-SiO2-Type Molten Mold Flux: Part I. Composition Evolution in Molten Mold Flux
In order to elucidate the reaction mechanism between high Mn-high Al steel such as twin-induced plasticity steel and molten mold flux composed mainly of CaO-SiO2 during continuous casting process, a series of laboratory-scale experiments were carried out in the present study. Molten steel and molten flux were brought to react in a refractory crucible in a temperature range between 1713 K to 1823 K (1440 A degrees C to 1550 A degrees C) and composition evolution in the steel and the flux was analyzed using inductively coupled plasma atomic emission spectroscopy, X-ray fluorescence, and electron probe microanalysis. The amount of SiO2 in the flux was significantly reduced by Al in the steelthus, Al2O3 was accumulated in the flux as a result of a chemical reaction, 4[Al] + 3(SiO2) = 3[Si] + 2(Al2O3). In order to find a major factor which governs the reaction, a number of factors ((pct CaO/pct SiO2), (pct Al2O3), [pct Al], [pct Si], and temperature) were varied in the experiments. It was found that the above chemical reaction was mostly governed by [pct Al] in the molten steel. Temperature had a mild effect on the reaction. On the other hand, (pct CaO/pct SiO2), (pct Al2O3), and [pct Si] did not show any noticeable effect on the reaction. Apart from the above reaction, the following reactions are also thought to happen simultaneously: 2[Mn] + (SiO2) = [Si] + 2(MnO) and 2[Fe] + (SiO2) = [Si] + 2(FeO). These oxide components were subsequently reduced by Al in the molten steel. Na2O in the molten flux was gradually decreased and the decrease was accelerated by increasing [pct Al] and temperature. Possible reactions affecting the Al2O3 accumulation are summarized.ope
Electron-hole symmetry in a semiconducting carbon nanotube quantum dot
Optical and electronic phenomena in solids arise from the behaviour of
electrons and holes (unoccupied states in a filled electron sea). Electron-hole
symmetry can often be invoked as a simplifying description, which states that
electrons with energy above the Fermi sea behave the same as holes below the
Fermi energy. In semiconductors, however, electron-hole symmetry is generally
absent since the energy band structure of the conduction band differs from the
valence band. Here we report on measurements of the discrete, quantized-energy
spectrum of electrons and holes in a semiconducting carbon nanotube. Through a
gate, an individual nanotube is filled controllably with a precise number of
either electrons or holes, starting from one. The discrete excitation spectrum
for a nanotube with N holes is strikingly similar to the corresponding spectrum
for N electrons. This observation of near perfect electron-hole symmetry
demonstrates for the first time that a semiconducting nanotube can be free of
charged impurities, even in the limit of few-electrons or holes. We furthermore
find an anomalously small Zeeman spin splitting and an excitation spectrum
indicating strong electron-electron interactions.Comment: 12 pages, 4 figure
P011: Clinical utility of initial follow-up blood cultures in patients with catheter-related Staphylococcus aureus bacteremia
Impact of visceral fat on skeletal muscle mass and vice versa in a prospective cohort study: The Korean Sarcopenic Obesity Study (KSOS)
Objectives: Sarcopenia and visceral obesity have been suggested to aggravate each other, resulting in a vicious cycle. However, evidence based on prospective study is very limited. Our purpose was to investigate whether visceral fat promotes a decrease in skeletal muscle mass and vice versa. Methods: We observed changes in anthropometric and body composition data during a follow-up period of 27.6±2.8 months in 379 Korean men and women (mean age 51.9±14.6 years) from the Korean Sarcopenic Obesity Study (KSOS). Appendicular lean soft tissue (ALST) mass was calculated using dual-energy X-ray absorptiometry, and visceral fat area (VFA) was measured using computed tomography at baseline and follow-up examination. Results: ALST mass significantly decreased, whereas trunk and total fat mass increased in both men and women despite no significant change in weight and body mass index. In particular, women with visceral obesity at baseline had a greater decrease in ALST mass than those without visceral obesity (P=0.001). In multiple linear regression analysis, baseline VFA was an independent negative predictor of the changes in ALST after adjusting for confounding factors including age, gender, life style and body composition parameters, insulin resistance, high sensitivity C-reactive protein and vitamin D levels (P=0.001), whereas the association between baseline ALST mass and changes in VFA was not statistically significant (P=0.555). Conclusions: This longitudinal study showed that visceral obesity was associated with future loss of skeletal muscle mass in Korean adults. These results may provide novel insight into sarcopenic obesity in an aging society
Weak Mixing Angle and Higgs Mass in Gauge-Higgs Unification Models with Brane Kinetic Terms
We show that the idea of Gauge-Higgs unification(GHU) can be rescued from the
constraint of weak mixing angle by introducing localized brane kinetic terms in
higher dimensional GHU models with bulk and simple gauge groups. We find that
those terms lead to a ratio between Higgs and W boson masses, which is a little
bit deviated from the one derived in the standard model. From numerical
analysis, we find that the current lower bound on the Higgs mass tends to
prefer to exceptional groups E(6), E(7), E(8) rather than other groups like
SU(3l), SO(2n+1), G(2), and F(4) in 6-dimensional(D) GHU models irrespective of
the compactification scales. For the compactification scale below 1 TeV, the
Higgs masses in 6D GHU models with SU(3l), SO(2n+1), G(2), and F(4) groups are
predicted to be less than the current lower bound unless a model parameter
responsible for re-scaling SU(2) gauge coupling is taken to be unnaturally
large enough. To see how the situation is changed in more higher dimensional
GHU model, we take 7D S^{3}/ Z_{2} and 8D T^{4}/ Z_{2} models. It turns out
from our numerical analysis that these higher dimensional GHU models with gauge
groups except for E(6) can lead to the Higgs boson whose masses are predicted
to be above the current lower bound only for the compatification scale above 1
TeV without taking unnaturally large value of the model parameter, whereas the
Higgs masses in the GHU models with E(6) are compatible with the current lower
bound even for the compatification scale below 1 TeV.Comment: 22 pages, 4 figure
Ab initio study of magnetism at the TiO2/LaAlO3 interface
In this paper we study the possible relation between the electronic and
magnetic structure of the TiO2/LaAlO3 interface and the unexpected magnetism
found in undoped TiO2 films grown on LaAlO. We concentrate on the role
played by structural relaxation and interfacial oxygen vacancies.
LaAlO3 has a layered structure along the (001) direction with alternating LaO
and AlO2 planes, with nominal charges of +1 and -1, respectively. As a
consequence of that, an oxygen deficient TiO2 film with anatase structure will
grow preferently on the AlO2 surface layer. We have therefore performed
ab-initio calculations for superlattices with TiO2/AlO2 interfaces with
interfacial oxygen vacancies. Our main results are that vacancies lead to a
change in the valence state of neighbour Ti atoms but not necessarily to a
magnetic solution and that the appearance of magnetism depends also on
structural details, such as second neighbor positions. These results are
obtained using both the LSDA and LSDA+U approximations.Comment: Accepted for publication in Journal of Materials Scienc
Emergent quantum confinement at topological insulator surfaces
Bismuth-chalchogenides are model examples of three-dimensional topological
insulators. Their ideal bulk-truncated surface hosts a single spin-helical
surface state, which is the simplest possible surface electronic structure
allowed by their non-trivial topology. They are therefore widely
regarded ideal templates to realize the predicted exotic phenomena and
applications of this topological surface state. However, real surfaces of such
compounds, even if kept in ultra-high vacuum, rapidly develop a much more
complex electronic structure whose origin and properties have proved
controversial. Here, we demonstrate that a conceptually simple model,
implementing a semiconductor-like band bending in a parameter-free
tight-binding supercell calculation, can quantitatively explain the entire
measured hierarchy of electronic states. In combination with circular dichroism
in angle-resolved photoemission (ARPES) experiments, we further uncover a rich
three-dimensional spin texture of this surface electronic system, resulting
from the non-trivial topology of the bulk band structure. Moreover, our study
reveals how the full surface-bulk connectivity in topological insulators is
modified by quantum confinement.Comment: 9 pages, including supplementary information, 4+4 figures. A high
resolution version is available at
http://www.st-andrews.ac.uk/~pdk6/pub_files/TI_quant_conf_high_res.pd
A study on the failure of steel chains in rotary cement kilns
The failure of steel chains which are used in rotary cement kilns costs cement companies a significant price. This study investigated the causes of chains failure at the Kufa cement plant and proposes new materials that can serve for a prolonged period of time. Two grades of steel chains were investigated including DIN 1.4742 (AISI 10F) and St37. Ten samples of chains from different locations from the kiln flame have been taken after 30 days and after 180 days of continuous work inside the rotary cement kiln. To study the effect of the distance from the kiln flame on the DIN 1.4742 (AISI 10F), another two samples have been replaced the St37 grade at a distance of 28.2 m. Chemical analysis for each sample under study has been carried out in order to highlight the differences between the used chain and the original chain in terms of alloying elements weight. An optical images of the unused and used chains of DIN 1.4742 (AISI 10F) steel grade have been taken to understand that the change occurs in the grain size. SEM-EDS technique was also applied to understand the possible segregation of elements. The results showed that the decrease of alloying elements pct, especially Cr, in the microstructure was the main reason of chain failure by corrosion/erosion mechanism. Preventing Cr from segregation can prolong the life of kiln chains during service. The study suggests new steel grades to replace DIN 1.4742 (AISI 10F) and St37 steel grades
5D UED: Flat and Flavorless
5D UED is not automatically minimally flavor violating. This is due to flavor
asymmetric counter-terms required on the branes. Additionally, there are likely
to be higher dimensional operators which directly contribute to flavor
observables. We document a mostly unsuccessful attempt at utilizing
localization in a flat extra dimension to resolve these flavor constraints
while maintaining KK-parity as a good quantum number. It is unsuccessful
insofar as we seem to be forced to add brane operators in such a way as to
precisely mimic the effects of a double throat warped extra dimension. In the
course of our efforts, we encounter and present solutions to a problem common
to many extra dimensional models in which fields are "doubly localized:"
ultra-light modes. Under scrutiny, this issue seems tied to an intrinsic
tension between maintaining Kaluza-Klein parity and resolving mass hierarchies
via localization.Comment: 27 pages, 6 figure
- …
