403 research outputs found

    Optimal measurement of visual motion across spatial and temporal scales

    Full text link
    Sensory systems use limited resources to mediate the perception of a great variety of objects and events. Here a normative framework is presented for exploring how the problem of efficient allocation of resources can be solved in visual perception. Starting with a basic property of every measurement, captured by Gabor's uncertainty relation about the location and frequency content of signals, prescriptions are developed for optimal allocation of sensors for reliable perception of visual motion. This study reveals that a large-scale characteristic of human vision (the spatiotemporal contrast sensitivity function) is similar to the optimal prescription, and it suggests that some previously puzzling phenomena of visual sensitivity, adaptation, and perceptual organization have simple principled explanations.Comment: 28 pages, 10 figures, 2 appendices; in press in Favorskaya MN and Jain LC (Eds), Computer Vision in Advanced Control Systems using Conventional and Intelligent Paradigms, Intelligent Systems Reference Library, Springer-Verlag, Berli

    Control of substrate access to the active site in methane monooxygenase

    Get PDF
    Methanotrophs consume methane as their major carbon source and have an essential role in the global carbon cycle by limiting escape of this greenhouse gas to the atmosphere. These bacteria oxidize methane to methanol by soluble and particulate methane monooxygenases (MMOs). Soluble MMO contains three protein components, a 251-kilodalton hydroxylase (MMOH), a 38.6-kilodalton reductase (MMOR), and a 15.9-kilodalton regulatory protein (MMOB), required to couple electron consumption with substrate hydroxylation at the catalytic diiron centre of MMOH. Until now, the role of MMOB has remained ambiguous owing to a lack of atomic-level information about the MMOH–MMOB (hereafter termed H–B) complex. Here we remedy this deficiency by providing a crystal structure of H–B, which reveals the manner by which MMOB controls the conformation of residues in MMOH crucial for substrate access to the active site. MMOB docks at the α[subscript 2]β[subscript 2] interface of α[subscript 2]β[subscript 2]γ[subscript 2] MMOH, and triggers simultaneous conformational changes in the α-subunit that modulate oxygen and methane access as well as proton delivery to the diiron centre. Without such careful control by MMOB of these substrate routes to the diiron active site, the enzyme operates as an NADH oxidase rather than a monooxygenase. Biological catalysis involving small substrates is often accomplished in nature by large proteins and protein complexes. The structure presented in this work provides an elegant example of this principle.National Institute of General Medical Sciences (U.S.) (Grant GM 32114

    Genetic variation and exercise-induced muscle damage: implications for athletic performance, injury and ageing.

    Get PDF
    Prolonged unaccustomed exercise involving muscle lengthening (eccentric) actions can result in ultrastructural muscle disruption, impaired excitation-contraction coupling, inflammation and muscle protein degradation. This process is associated with delayed onset muscle soreness and is referred to as exercise-induced muscle damage. Although a certain amount of muscle damage may be necessary for adaptation to occur, excessive damage or inadequate recovery from exercise-induced muscle damage can increase injury risk, particularly in older individuals, who experience more damage and require longer to recover from muscle damaging exercise than younger adults. Furthermore, it is apparent that inter-individual variation exists in the response to exercise-induced muscle damage, and there is evidence that genetic variability may play a key role. Although this area of research is in its infancy, certain gene variations, or polymorphisms have been associated with exercise-induced muscle damage (i.e. individuals with certain genotypes experience greater muscle damage, and require longer recovery, following strenuous exercise). These polymorphisms include ACTN3 (R577X, rs1815739), TNF (-308 G>A, rs1800629), IL6 (-174 G>C, rs1800795), and IGF2 (ApaI, 17200 G>A, rs680). Knowing how someone is likely to respond to a particular type of exercise could help coaches/practitioners individualise the exercise training of their athletes/patients, thus maximising recovery and adaptation, while reducing overload-associated injury risk. The purpose of this review is to provide a critical analysis of the literature concerning gene polymorphisms associated with exercise-induced muscle damage, both in young and older individuals, and to highlight the potential mechanisms underpinning these associations, thus providing a better understanding of exercise-induced muscle damage

    In vitro calibration of a system for measurement of in vivo convective heat transfer coefficient in animals

    Get PDF
    BACKGROUND: We need a sensor to measure the convective heat transfer coefficient during ablation of the heart or liver. METHODS: We built a minimally invasive instrument to measure the in vivo convective heat transfer coefficient, h in animals, using a Wheatstone-bridge circuit, similar to a hot-wire anemometer circuit. One arm is connected to a steerable catheter sensor whose tip is a 1.9 mm × 3.2 mm thin film resistive temperature detector (RTD) sensor. We used a circulation system to simulate different flow rates at 39°C for in vitro experiments using distilled water, tap water and saline. We heated the sensor approximately 5°C above the fluid temperature. We measured the power consumed by the sensor and the resistance of the sensor during the experiments and analyzed these data to determine the value of the convective heat transfer coefficient at various flow rates. RESULTS: From 0 to 5 L/min, experimental values of h in W/(m(2)·K) were for distilled water 5100 to 13000, for tap water 5500 to 12300, and for saline 5400 to 13600. Theoretical values were 1900 to 10700. CONCLUSION: We believe this system is the smallest, most accurate method of minimally invasive measurement of in vivo h in animals and provides the least disturbance of flow

    Isolation and Biophysical Characterisation of Bioactive Polysaccharides from Cucurbita Moschata (Butternut Squash)

    Get PDF
    Cucurbits are plants that have been used frequently as functional foods. This study includes the extraction, isolation, and characterisation of the mesocarp polysaccharide of Cucurbita moschata. The polysaccharide component was purified by gel filtration into three fractions (NJBTF1, NJBTF2, and NJBTF3) of different molecular weights. Characterisation includes the hydrodynamic properties, identification of monosaccharide composition, and bioactivity. Sedimentation velocity also indicated the presence of small amounts of additional discrete higher molecular weight components even after fractionation. Sedimentation equilibrium revealed respective weight average molecular weights of 90, 31, and 19 kDa, with the higher fractions (NJBTF1 and NJBTF2) indicating a tendency to self-associate. Based on the limited amount of data (combinations of 3 sets of viscosity and sedimentation data corresponding to the 3 fractions), HYDFIT indicates an extended, semi-flexible coil conformation. Of all the fractions obtained, NJBTF1 showed the highest bioactivity. All fractions contained galacturonic acid and variable amounts of neutral sugars. To probe further, the extent of glycosidic linkages in NJBTF1 was estimated using gas chromatography–mass spectrometry (GCMS), yielding a high galacturonic acid content (for pectin polysaccharide) and the presence of fructans—the first evidence of fructans (levan) in the mesocarp. Our understanding of the size and structural flexibility together with the high bioactivity suggests that the polysaccharide obtained from C. moschata has the potential to be developed into a therapeutic agent

    Detection of macrolide and disinfectant resistance genes in clinical Staphylococcus aureus and coagulase-negative staphylococci

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Staphylococcus aureus </it>and Coagulase-negative staphylococci (CoNS) are a major source of infections associated with indwelling medical devices. Many antiseptic agents are used in hygienic handwash to prevent nosocomial infections by Staphylococci. Our aim was to determine the antibiotic susceptibility and resistance to quaternary ammonium compound of 46 <it>S. aureus </it>strains and 71 CoNS.</p> <p>Methods</p> <p><it>S. aureus </it>(n = 46) isolated from auricular infection and CoNS (n = 71), 22 of the strains isolated from dialysis fluids and 49 of the strains isolated from needles cultures were investigated. Erythromycin resistance genes (<it>erm</it>A, <it>erm</it>B, <it>erm</it>C, <it>msr</it>A and <it>mef</it>) were analysed by multiplex PCR and disinfectant-resistant genes (<it>qac</it>A, <it>qac</it>B, and <it>qac</it>C) were studied by PCR-RFLP.</p> <p>Results</p> <p>The frequency of erythromycin resistance genes in <it>S. aureus </it>was: <it>erm</it>A+ 7.7%, <it>erm</it>B+ 13.7%, <it>erm</it>C+ 6% and <it>msr</it>A+ 10.2%. In addition, the number of positive isolates in CoNS was respectively <it>erm</it>A+ (9.4%), <it>erm</it>B+ (11.1%), <it>erm</it>C+ (27.4%), and <it>msr</it>A+ (41%). The MIC analyses revealed that 88 isolates (74%) were resistant to quaternary ammonium compound-based disinfectant benzalkonium chloride (BC). 56% of the BC-resistant staphylococcus isolates have at least one of the three resistant disinfectants genes (<it>qac</it>A, <it>qac</it>B and <it>qac</it>C). Nine strains (7.7%) among the CoNS species and two <it>S. aureus </it>strains (2%) harboured the three-<it>qac </it>genes. In addition, the <it>qac</it>C were detected in 41 strains.</p> <p>Conclusions</p> <p>Multi-resistant strains towards macrolide and disinfectant were recorded. The investigation of antibiotics and antiseptic-resistant CoNS may provide crucial information on the control of nosocomial infections.</p

    Factors associated with severe dry eye in primary Sjögren´s syndrome diagnosed patients

    Get PDF
    Introduction Primary Sjögren?s syndrome (pSS) is an autoimmune disease, characterized by lymphocytic infiltration of exocrine glands and other organs, resulting in dry eye, dry mouth and extraglandular systemic findings. Objective To explore the association of severe or very severe dry eye with extraocular involvement in patients diagnosed with primary Sjögren?s syndrome. Methods SJOGRENSER registry is a multicenter cross-sectional study of pSS patients. For the construction of our main variable, severe/very severe dry eye, we used those variables that represented a degree 3?4 of severity according to the 2007 Dry Eye Workshop classification. First, bivariate logistic regression models were used to identify the effect of each independent variable on severe/very severe dry eye. Secondly, multivariate analysis using regression model was used to establish the independent effect of patient characteristics. Results Four hundred and thirty-seven patients were included in SJOGRENSER registry; 94% of the patients complained of dry eye and 16% developed corneal ulcer. Schirmer?s test was pathological in 92% of the patients; 378 patients presented severe/very severe dry eye. Inflammatory articular involvement was significantly more frequent in patients with severe/very severe dry eye than in those without severe/very severe dry eye (82.5 vs 69.5%, p = 0,028). Inflammatory joint involvement was associated with severe/very severe dry eye in the multivariate analysis, OR 2.079 (95% CI 1.096?3.941). Conclusion Severe or very severe dry eye is associated with the presence of inflammatory joint involvement in patients with pSS. These results suggest that a directed anamnesis including systemic comorbidities, such as the presence of inflammatory joint involvement or dry mouth in patients with dry eye, would be useful to suspect a pSS

    Liquid Biopsy in Non-Small Cell Lung Cancer (NSCLC)

    Get PDF
    Lung cancer is the leading cause of cancer deaths worldwide. To date, the gold standard for the molecular analysis of a patient affected by NSCLC is the tissue biopsy. The discovery of activating mutations and rearrangements in specific genes has revolutionized the therapeutic approaches of lung cancer over the last years. For this reason, a strict \u201cmolecular follow-up\u201d is mandatory to evaluate patient\u2019s disease evolution. Indeed, liquid biopsy has raised as the \u201cnew ambrosia of researchers\u201d as it could help clinicians to identify both prognostic and predictive biomarkers in a more accessible way. Liquid biopsy analysis can be used in different moments starting from diagnosis to relapse, earning multiple clinical meanings, offering thus a noninvasive but valid method to detect actionable mutations. Although the implementation of both exosomes and CTCs in clinical practice is several steps back, new advances and discoveries make them, together with the ctDNA, a very promising tool. In the following chapter we will discuss the recent advances of liquid biopsy in NSCLC highlighting the possible clinical utility of CTCs, ctDNA and exosomes

    Choosing to live with home dialysis-patients' experiences and potential for telemedicine support: a qualitative study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>This study examines the patients' need for information and guidance in the selection of dialysis modality, and in establishing and practicing home dialysis. The study focuses on patients' experiences living with home dialysis, how they master the treatment, and their views on how to optimize communication with health services and the potential of telemedicine.</p> <p>Methods</p> <p>We used an inductive research strategy and conducted semi-structured interviews with eleven patients established in home dialysis. Our focus was the patients' experiences with home dialysis, and our theoretical reference was patients' empowerment through telemedicine solutions. Three informants had home haemodialysis (HHD); eight had peritoneal dialysis (PD), of which three had automated peritoneal dialysis (APD); and five had continuous ambulatory peritoneal dialysis (CAPD). The material comprises all PD-patients in the catchment area capable of being interviewed, and all known HHD-users in Norway at that time.</p> <p>Results</p> <p>All of the interviewees were satisfied with their choice of home dialysis, and many experienced a normalization of daily life, less dominated by disease. They exhibited considerable self-management skills and did not perceive themselves as ill, but still required very close contact with the hospital staff for communication and follow-up. When choosing a dialysis modality, other patients' experiences were often more influential than advice from specialists. Information concerning the possibility of having HHD, including knowledge of how to access it, was not easily available. Especially those with dialysis machines, both APD and HHD, saw a potential for telemedicine solutions.</p> <p>Conclusions</p> <p>As home dialysis may contribute to a normalization of life less dominated by disease, the treatment should be organized so that the potential for home dialysis can be fully exploited. Pre-dialysis information should be unbiased and include access to other patients' experiences. Telemedicine may potentially facilitate a communication-based follow-up and improve safety within the home setting, making it easier to choose and live with home dialysis.</p

    Expression of human beta-defensins 1 and 2 in kidneys with chronic bacterial infection

    Get PDF
    BACKGROUND: Constitutive expression and localization of antimicrobial human β-defensin-1 (HBD-1) in human kidneys as a potential mechanism of antimicrobial defense has been previously reported. Inducible expression of human β-defensin-2 (HBD-2) has been described in various epithelial organs but not for the urogenital tract. METHODS: We investigated the gene- and protein expression of HBD-1 and HBD-2 by reverse transcriptase-polymerase chain reaction, and immunohistochemistry in 15 normal human kidney samples and 15 renal tissues with chronic bacterial infection. Additionally, cell culture experiments were performed to study HBD gene expression by real-time RT-PCR in response to inflammatory cytokines TNFα and IL-1β as well as lipopolysaccharide from Gram-negative bacteria. RESULTS: Constitutive HBD-1 gene- and protein expression was detected in normal renal tissue and kidneys with chronic infection. As a novel finding, inducible HBD-2 gene- and protein expression was demonstrated in tubulus epithelia with chronic infection but not in normal renal tissue. In pyelonephritic kidneys HBD-1 and HBD-2 expression showed a similar pattern of localizaton in distal tubules, loops of Henle and in collecting ducts of the kidney. Furthermore, real-time RT-PCR of kidney derived cell lines stimulated with inflammatory agents TNF-α, IL-1β and LPS revealed a strong increase in relative HBD-2 transcription level and also a slight increase in relative HBD-1 transcription level. CONCLUSIONS: Upregulated HBD-2 expression in renal tubulus epithelium indicates a role of a wider range of human defensins for antimicrobial host defense in the urogenital tract than previously recognized
    corecore