39 research outputs found
A systematic review of the effectiveness and cost-effectiveness of peer education and peer support in prisons.
BACKGROUND: Prisoners experience significantly worse health than the general population. This review examines the effectiveness and cost-effectiveness of peer interventions in prison settings. METHODS: A mixed methods systematic review of effectiveness and cost-effectiveness studies, including qualitative and quantitative synthesis was conducted. In addition to grey literature identified and searches of websites, nineteen electronic databases were searched from 1985 to 2012. Study selection criteria were: Population: Prisoners resident in adult prisons and children resident in Young Offender Institutions (YOIs). INTERVENTION: Peer-based interventions Comparators: Review questions 3 and 4 compared peer and professionally led approaches. OUTCOMES: Prisoner health or determinants of health; organisational/ process outcomes; views of prison populations. STUDY DESIGNS: Quantitative, qualitative and mixed method evaluations. RESULTS: Fifty-seven studies were included in the effectiveness review and one study in the cost-effectiveness review; most were of poor methodological quality. Evidence suggested that peer education interventions are effective at reducing risky behaviours, and that peer support services are acceptable within the prison environment and have a positive effect on recipients, practically or emotionally. Consistent evidence from many, predominantly qualitative, studies, suggested that being a peer deliverer was associated with positive effects. There was little evidence on cost-effectiveness of peer-based interventions. CONCLUSIONS: There is consistent evidence from a large number of studies that being a peer worker is associated with positive health; peer support services are also an acceptable source of help within the prison environment and can have a positive effect on recipients. Research into cost-effectiveness is sparse. SYSTEMATIC REVIEW REGISTRATION: PROSPERO ref: CRD42012002349
Coronavirus Gene 7 Counteracts Host Defenses and Modulates Virus Virulence
Transmissible gastroenteritis virus (TGEV) genome contains three accessory genes: 3a, 3b and 7. Gene 7 is only present in members of coronavirus genus a1, and encodes a hydrophobic protein of 78 aa. To study gene 7 function, a recombinant TGEV virus lacking gene 7 was engineered (rTGEV-Δ7). Both the mutant and the parental (rTGEV-wt) viruses showed the same growth and viral RNA accumulation kinetics in tissue cultures. Nevertheless, cells infected with rTGEV-Δ7 virus showed an increased cytopathic effect caused by an enhanced apoptosis mediated by caspase activation. Macromolecular synthesis analysis showed that rTGEV-Δ7 virus infection led to host translational shut-off and increased cellular RNA degradation compared with rTGEV-wt infection. An increase of eukaryotic translation initiation factor 2 (eIF2α) phosphorylation and an enhanced nuclease, most likely RNase L, activity were observed in rTGEV-Δ7 virus infected cells. These results suggested that the removal of gene 7 promoted an intensified dsRNA-activated host antiviral response. In protein 7 a conserved sequence motif that potentially mediates binding to protein phosphatase 1 catalytic subunit (PP1c), a key regulator of the cell antiviral defenses, was identified. We postulated that TGEV protein 7 may counteract host antiviral response by its association with PP1c. In fact, pull-down assays demonstrated the interaction between TGEV protein 7, but not a protein 7 mutant lacking PP1c binding motif, with PP1. Moreover, the interaction between protein 7 and PP1 was required, during the infection, for eIF2α dephosphorylation and inhibition of cell RNA degradation. Inoculation of newborn piglets with rTGEV-Δ7 and rTGEV-wt viruses showed that rTGEV-Δ7 virus presented accelerated growth kinetics and pathology compared with the parental virus. Overall, the results indicated that gene 7 counteracted host cell defenses, and modified TGEV persistence increasing TGEV survival. Therefore, the acquisition of gene 7 by the TGEV genome most likely has provided a selective advantage to the virus
Emerging concepts in biomarker discovery; The US-Japan workshop on immunological molecular markers in oncology
Supported by the Office of International Affairs, National Cancer Institute (NCI), the "US-Japan Workshop on Immunological Biomarkers in Oncology" was held in March 2009. The workshop was related to a task force launched by the International Society for the Biological Therapy of Cancer (iSBTc) and the United States Food and Drug Administration (FDA) to identify strategies for biomarker discovery and validation in the field of biotherapy. The effort will culminate on October 28th 2009 in the "iSBTc-FDA-NCI Workshop on Prognostic and Predictive Immunologic Biomarkers in Cancer", which will be held in Washington DC in association with the Annual Meeting. The purposes of the US-Japan workshop were a) to discuss novel approaches to enhance the discovery of predictive and/or prognostic markers in cancer immunotherapy; b) to define the state of the science in biomarker discovery and validation. The participation of Japanese and US scientists provided the opportunity to identify shared or discordant themes across the distinct immune genetic background and the diverse prevalence of disease between the two Nations
The Escitalopram versus Electric Current Therapy for Treating Depression Clinical Study (ELECT-TDCS): rationale and study design of a non-inferiority, triple-arm, placebo-controlled clinical trial
Non-pharmacological strategies to decrease anxiety in cardiac catheterization: integrative review
Effects of Eurythmy Therapy in the Treatment of Essential Arterial Hypertension: A Pilot Study
Sleep recalibrates homeostatic and associative synaptic plasticity in the human cortex
Sleep is ubiquitous in animals and humans, but its function remains to be further determined. The synaptic homeostasis hypothesis of sleep–wake regulation proposes a homeostatic increase in net synaptic strength and cortical excitability along with decreased inducibility of associative synaptic long-term potentiation (LTP) due to saturation after sleep deprivation. Here we use electrophysiological, behavioural and molecular indices to non-invasively study net synaptic strength and LTP-like plasticity in humans after sleep and sleep deprivation. We demonstrate indices of increased net synaptic strength (TMS intensity to elicit a predefined amplitude of motor-evoked potential and EEG theta activity) and decreased LTP-like plasticity (paired associative stimulation induced change in motor-evoked potential and memory formation) after sleep deprivation. Changes in plasma BDNF are identified as a potential mechanism. Our study indicates that sleep recalibrates homeostatic and associative synaptic plasticity, believed to be the neural basis for adaptive behaviour, in humans
