435 research outputs found

    Holographic Phase Transition to Topological Dyons

    Full text link
    The dynamical stability of a Julia-Zee solution in the AdS background in a four dimensional Einstein-Yang-Mills-Higgs theory is studied. We find that the model with a vanishing scalar field develops a non-zero value for the field at a certain critical temperature which corresponds to a topological dyon in the bulk and a topological phase transition at the boundary.Comment: 18 pages, 2 figures, 2 tables, sections 2 and 4 are shortened, an error in the last part of section 5 is corrected and equations are modified. This version to be published in JHE

    Correlators of Vertex Operators for Circular Strings with Winding Numbers in AdS5xS5

    Full text link
    We compute semiclassically the two-point correlator of the marginal vertex operators describing the rigid circular spinning string state with one large spin and one windining number in AdS_5 and three large spins and three winding numbers in S^5. The marginality condition and the conformal invariant expression for the two-point correlator obtained by using an appropriate vertex operator are shown to be associated with the diagonal and off-diagonal Virasoro constraints respectively. We evaluate semiclassically the three-point correlator of two heavy circular string vertex operators and one zero-momentum dilaton vertex operator and discuss its relation with the derivative of the dimension of the heavy circular string state with respect to the string tension.Comment: 16 pages, LaTeX, no figure

    Calogero-Sutherland Approach to Defect Blocks

    Full text link
    Extended objects such as line or surface operators, interfaces or boundaries play an important role in conformal field theory. Here we propose a systematic approach to the relevant conformal blocks which are argued to coincide with the wave functions of an integrable multi-particle Calogero-Sutherland problem. This generalizes a recent observation in 1602.01858 and makes extensive mathematical results from the modern theory of multi-variable hypergeometric functions available for studies of conformal defects. Applications range from several new relations with scalar four-point blocks to a Euclidean inversion formula for defect correlators.Comment: v2: changes for clarit

    Correlation functions, null polygonal Wilson loops, and local operators

    Full text link
    We consider the ratio of the correlation function of n+1 local operators over the correlator of the first n of these operators in planar N=4 super-Yang-Mills theory, and consider the limit where the first n operators become pairwise null separated. By studying the problem in twistor space, we prove that this is equivalent to the correlator of a n-cusp null polygonal Wilson loop with the remaining operator in general position, normalized by the expectation value of the Wilson loop itself, as recently conjectured by Alday, Buchbinder and Tseytlin. Twistor methods also provide a BCFW-like recursion relation for such correlators. Finally, we study the natural extension where n operators become pairwise null separated with k operators in general position. As an example, we perform an analysis of the resulting correlator for k=2 and discuss some of the difficulties associated to fixing the correlator completely in the strong coupling regime.Comment: 34 pages, 6 figures. v2: typos corrected and references added; v3: published versio

    Towards sustainable processing of columbite group minerals: elucidating the relation between dielectric properties and physico-chemical transformations in the mineral phase

    Get PDF
    Current methodologies for the extraction of tantalum and niobium pose a serious threat to human beings and the environment due to the use of hydrofluoric acid (HF). Niobium and tantalum metal powders and pentoxides are widely used for energy efficient devices and components. However, the current processing methods for niobium and tantalum metals and oxides are energy inefficient. This dichotomy between materials use for energy applications and their inefficient processing is the main motivation for exploring a new methodology for the extraction of these two oxides, investigating the microwave absorption properties of the reaction products formed during the alkali roasting of niobium-tantalum bearing minerals with sodium bicarbonate. The experimental findings from dielectric measurement at elevated temperatures demonstrate an exponential increase in the values of the dielectric properties as a result of the formation of NaNbO3-NaTaO3solid solutions at temperatures above 700 °C. The investigation of the evolution of the dielectric properties during the roasting reaction is a key feature in underpinning the mechanism for designing a new microwave assisted high-temperature process for the selective separation of niobium and tantalum oxides from the remainder mineral crystalline lattice

    The generalized cusp in ABJ(M) N = 6 Super Chern-Simons theories

    Full text link
    We construct a generalized cusped Wilson loop operator in N = 6 super Chern-Simons-matter theories which is locally invariant under half of the supercharges. It depends on two parameters and interpolates smoothly between the 1/2 BPS line or circle and a pair of antiparallel lines, representing a natural generalization of the quark-antiquark potential in ABJ(M) theories. For particular choices of the parameters we obtain 1/6 BPS configurations that, mapped on S^2 by a conformal transformation, realize a three-dimensional analogue of the wedge DGRT Wilson loop of N = 4. The cusp couples, in addition to the gauge and scalar fields of the theory, also to the fermions in the bifundamental representation of the U(N)xU(M) gauge group and its expectation value is expressed as the holonomy of a suitable superconnection. We discuss the definition of these observables in terms of traces and the role of the boundary conditions of fermions along the loop. We perform a complete two-loop analysis, obtaining an explicit result for the generalized cusp at the second non-trivial order, from which we read off the interaction potential between heavy 1/2 BPS particles in the ABJ(M) model. Our results open the possibility to explore in the three-dimensional case the connection between localization properties and integrability, recently advocated in D = 4.Comment: 53 pages, 10 figures, added references, this is the version appeared on JHE

    Composite GUTs: models and expectations at the LHC

    Get PDF
    We investigate grand unified theories (GUTs) in scenarios where electroweak (EW) symmetry breaking is triggered by a light composite Higgs, arising as a Nambu-Goldstone boson from a strongly interacting sector. The evolution of the standard model (SM) gauge couplings can be predicted at leading order, if the global symmetry of the composite sector is a simple group G that contains the SM gauge group. It was noticed that, if the right-handed top quark is also composite, precision gauge unification can be achieved. We build minimal consistent models for a composite sector with these properties, thus demonstrating how composite GUTs may represent an alternative to supersymmetric GUTs. Taking into account the new contributions to the EW precision parameters, we compute the Higgs effective potential and prove that it realizes consistently EW symmetry breaking with little fine-tuning. The G group structure and the requirement of proton stability determine the nature of the light composite states accompanying the Higgs and the top quark: a coloured triplet scalar and several vector-like fermions with exotic quantum numbers. We analyse the signatures of these composite partners at hadron colliders: distinctive final states contain multiple top and bottom quarks, either alone or accompanied by a heavy stable charged particle, or by missing transverse energy.Comment: 55 pages, 13 figures, final version to be published in JHE

    New AdS solitons and brane worlds with compact extra-dimensions

    Full text link
    We construct new static, asymptotically AdS solutions where the conformal infinity is the product of Minkowski spacetime MnM_n and a sphere SmS^m. Both globally regular, soliton-type solutions and black hole solutions are considered. The black holes can be viewed as natural AdS generalizations of the Schwarzschild black branes in Kaluza-Klein theory. The solitons provide new brane-world models with compact extra-dimensions. Different from the Randall-Sundrum single-brane scenario, a Schwarzschild black hole on the Ricci flat part of these branes does not lead to a naked singularity in the bulk.Comment: 28 pages, 4 figure

    Study of Bc+B_c^+ decays to the K+Kπ+K^+K^-\pi^+ final state and evidence for the decay Bc+χc0π+B_c^+\to\chi_{c0}\pi^+

    Get PDF
    A study of Bc+K+Kπ+B_c^+\to K^+K^-\pi^+ decays is performed for the first time using data corresponding to an integrated luminosity of 3.0 fb1\mathrm{fb}^{-1} collected by the LHCb experiment in pppp collisions at centre-of-mass energies of 77 and 88 TeV. Evidence for the decay Bc+χc0(K+K)π+B_c^+\to\chi_{c0}(\to K^+K^-)\pi^+ is reported with a significance of 4.0 standard deviations, resulting in the measurement of σ(Bc+)σ(B+)×B(Bc+χc0π+)\frac{\sigma(B_c^+)}{\sigma(B^+)}\times\mathcal{B}(B_c^+\to\chi_{c0}\pi^+) to be (9.83.0+3.4(stat)±0.8(syst))×106(9.8^{+3.4}_{-3.0}(\mathrm{stat})\pm 0.8(\mathrm{syst}))\times 10^{-6}. Here B\mathcal{B} denotes a branching fraction while σ(Bc+)\sigma(B_c^+) and σ(B+)\sigma(B^+) are the production cross-sections for Bc+B_c^+ and B+B^+ mesons. An indication of bˉc\bar b c weak annihilation is found for the region m(Kπ+)<1.834GeV ⁣/c2m(K^-\pi^+)<1.834\mathrm{\,Ge\kern -0.1em V\!/}c^2, with a significance of 2.4 standard deviations.Comment: All figures and tables, along with any supplementary material and additional information, are available at https://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/LHCb-PAPER-2016-022.html, link to supplemental material inserted in the reference

    Observation of Bc+ →j /ψD (∗)K (∗) decays

    Get PDF
    A search for the decays B+c→J/ψD(*)0K+ and B+c→J/ψD(*)+K*0 is performed with data collected at the LHCb experiment corresponding to an integrated luminosity of 3 fb−1. The decays B+c→J/ψ0K+ and B+c→J/ψD*0K+ are observed for the first time, while first evidence is reported for the B+c→JψD*+K*0 and B+c→J/ψD+K*0 decays. The branching fractions of these decays are determined relative to the B+c→J/ψπ+ decay. The B+c mass is measured, using the J/ψD0K+ final state, to be 6274.28±1.40(stat)±0.32(syst) MeV/c2. This is the most precise single measurement of the B+c mass to date
    corecore