479 research outputs found
Broadband, Polarization-Sensitive Photodetector Based on Optically-Thick Films of Macroscopically Long, Dense, and Aligned Carbon Nanotubes
Increasing performance demands on photodetectors and solar cells require the development of entirely new
materials and technological approaches.Wereport on the fabrication and optoelectronic characterization of
a photodetector based on optically-thick films of dense, aligned, and macroscopically long single-wall
carbon nanotubes. The photodetector exhibits broadband response from the visible to the mid-infrared
under global illumination, with a response time less than 32 ms. Scanning photocurrent microscopy
indicates that the signal originates at the contact edges, with an amplitude and width that can be tailored by
choosing different contact metals. A theoretical model demonstrates the photothermoelectric origin of the
photoresponse due to gradients in the nanotube Seebeck coefficient near the contacts. The experimental and
theoretical results open a new path for the realization of optoelectronic devices based on
three-dimensionally organized nanotubes
Effective Rheology of Bubbles Moving in a Capillary Tube
We calculate the average volumetric flux versus pressure drop of bubbles
moving in a single capillary tube with varying diameter, finding a square-root
relation from mapping the flow equations onto that of a driven overdamped
pendulum. The calculation is based on a derivation of the equation of motion of
a bubble train from considering the capillary forces and the entropy production
associated with the viscous flow. We also calculate the configurational
probability of the positions of the bubbles.Comment: 4 pages, 1 figur
Thermal Properties of Graphene, Carbon Nanotubes and Nanostructured Carbon Materials
Recent years witnessed a rapid growth of interest of scientific and
engineering communities to thermal properties of materials. Carbon allotropes
and derivatives occupy a unique place in terms of their ability to conduct
heat. The room-temperature thermal conductivity of carbon materials span an
extraordinary large range - of over five orders of magnitude - from the lowest
in amorphous carbons to the highest in graphene and carbon nanotubes. I review
thermal and thermoelectric properties of carbon materials focusing on recent
results for graphene, carbon nanotubes and nanostructured carbon materials with
different degrees of disorder. A special attention is given to the unusual size
dependence of heat conduction in two-dimensional crystals and, specifically, in
graphene. I also describe prospects of applications of graphene and carbon
materials for thermal management of electronics.Comment: Review Paper; 37 manuscript pages; 4 figures and 2 boxe
Survivors of intensive care with type 2 diabetes and the effect of shared care follow-up clinics: study protocol for the SWEET-AS randomised controlled feasibility study
Published online: 13 October 2016Background: Many patients who survive the intensive care unit (ICU) experience long-term complications such as peripheral neuropathy and nephropathy which represent a major source of morbidity and affect quality of life adversely. Similar pathophysiological processes occur frequently in ambulant patients with diabetes mellitus who have never been critically ill. Some 25 % of all adult ICU patients have diabetes, and it is plausible that ICU survivors with co-existing diabetes are at heightened risk of sequelae from their critical illness. ICU follow-up clinics are being progressively implemented based on the concept that interventions provided in these clinics will alleviate the burdens of survivorship. However, there is only limited information about their outcomes. The few existing studies have utilised the expertise of healthcare professionals primarily trained in intensive care and evaluated heterogenous cohorts. A shared care model with an intensivist- and diabetologist-led clinic for ICU survivors with type 2 diabetes represents a novel targeted approach that has not been evaluated previously. Prior to undertaking any definitive study, it is essential to establish the feasibility of this intervention. Methods: This will be a prospective, randomised, parallel, open-label feasibility study. Eligible patients will be approached before ICU discharge and randomised to the intervention (attending a shared care follow-up clinic 1 month after hospital discharge) or standard care. At each clinic visit, patients will be assessed independently by both an intensivist and a diabetologist who will provide screening and targeted interventions. Six months after discharge, all patients will be assessed by blinded assessors for glycated haemoglobin, peripheral neuropathy, cardiovascular autonomic neuropathy, nephropathy, quality of life, frailty, employment and healthcare utilisation. The primary outcome of this study will be the recruitment and retention at 6 months of all eligible patients. Discussion: This study will provide preliminary data about the potential effects of critical illness on chronic glucose metabolism, the prevalence of microvascular complications, and the impact on healthcare utilisation and quality of life in intensive care survivors with type 2 diabetes. If feasibility is established and point estimates are indicative of benefit, funding will be sought for a larger, multi-centre study. Trial registration: ANZCTR ACTRN12616000206426Yasmine Ali Abdelhamid, Liza Phillips, Michael Horowitz and Adam Dean
Evaluation of next-generation sequencing software in mapping and assembly
Next-generation high-throughput DNA sequencing technologies have advanced progressively in sequence-based genomic research and novel biological applications with the promise of sequencing DNA at unprecedented speed. These new non-Sanger-based technologies feature several advantages when compared with traditional sequencing methods in terms of higher sequencing speed, lower per run cost and higher accuracy. However, reads from next-generation sequencing (NGS) platforms, such as 454/Roche, ABI/SOLiD and Illumina/Solexa, are usually short, thereby restricting the applications of NGS platforms in genome assembly and annotation. We presented an overview of the challenges that these novel technologies meet and particularly illustrated various bioinformatics attempts on mapping and assembly for problem solving. We then compared the performance of several programs in these two fields, and further provided advices on selecting suitable tools for specific biological applications.published_or_final_versio
Alignment of the ALICE Inner Tracking System with cosmic-ray tracks
37 pages, 15 figures, revised version, accepted by JINSTALICE (A Large Ion Collider Experiment) is the LHC (Large Hadron Collider) experiment devoted to investigating the strongly interacting matter created in nucleus-nucleus collisions at the LHC energies. The ALICE ITS, Inner Tracking System, consists of six cylindrical layers of silicon detectors with three different technologies; in the outward direction: two layers of pixel detectors, two layers each of drift, and strip detectors. The number of parameters to be determined in the spatial alignment of the 2198 sensor modules of the ITS is about 13,000. The target alignment precision is well below 10 micron in some cases (pixels). The sources of alignment information include survey measurements, and the reconstructed tracks from cosmic rays and from proton-proton collisions. The main track-based alignment method uses the Millepede global approach. An iterative local method was developed and used as well. We present the results obtained for the ITS alignment using about 10^5 charged tracks from cosmic rays that have been collected during summer 2008, with the ALICE solenoidal magnet switched off.Peer reviewe
Use and mis-use of supplementary material in science publications
Supplementary material is a ubiquitous feature of scientific articles, particularly in journals that limit the length of the articles. While the judicious use of supplementary material can improve the readability of scientific articles, its excessive use threatens the scientific review process and by extension the integrity of the scientific literature. In many cases supplementary material today is so extensive that it is reviewed superficially or not at all. Furthermore, citations buried within supplementary files rob other scientists of recognition of their contribution to the scientific record. These issues are exacerbated by the lack of guidance on the use of supplementary information from the journals to authors and reviewers. We propose that the removal of artificial length restrictions plus the use of interactive features made possible by modern electronic media can help to alleviate these problems. Many journals, in fact, have already removed article length limitations (as is the case for BMC Bioinformatics and other BioMed Central journals). We hope that the issues raised in our article will encourage publishers and scientists to work together towards a better use of supplementary information in scientific publishing.https://doi.org/10.1186/s12859-015-0668-
Anticipating pulmonary complications after thoracotomy: the FLAM Score
OBJECTIVE: Pulmonary complications after thoracotomy are the result of progressive changes in the respiratory status of the patient. A multifactorial score (FLAM score) was developed to identify postoperatively patients at higher risk for pulmonary complications at least 24 hours before the clinical diagnosis. METHODS: The FLAM score, created in 2002, is based on 7 parameters (dyspnea, chest X-ray, delivered oxygen, auscultation, cough, quality and quantity of bronchial secretions). To validate the FLAM score, we prospectively calculated scores during the first postoperative week in 300 consecutive patients submitted to posterolateral thoracotomy. RESULTS: During the study, 60 patients (20%) developed pulmonary complications during the postoperative period. The FLAM score progressively increased in complicated patients until the fourth postoperative day (mean 13.5 ± 11.9). FLAM scores in patients with complications were significantly higher (p < 0.05) at least 24 hours before the clinical diagnosis of complication, compared to FLAM scores in uncomplicated patients. ROC curves analysis showed that the cut-off value of FLAM with the best sensitivity and specificity for pulmonary complications was 9 (area under the curve 0.97). Based on the highest FLAM scores recorded, 4 risk classes were identified with increasing incidence of pulmonary complications and mortality. CONCLUSION: Changes in FLAM score were evident at least 24 hours before the clinical diagnosis of pulmonary complications. FLAM score can be used to categorize patients according to risk of respiratory morbidity and mortality and could be a useful tool in the postoperative management of patients undergoing thoracotomy
Arthrogryposis multiplex congenital (AMC) in a three year old boy: differential diagnosis with distal arthrogryposis: a case report
- …
