3,957 research outputs found
Risk factors for tuberculosis in older children and adolescents: a matched case-control study in Recife, Brazil.
BACKGROUND: Tuberculosis is a major disease worldwide and most research focus on risk factors for adults, although there is a marked adolescent peak in incidence. The objective of this study was to identify risk factors for tuberculosis in children aged 7 to 19. METHODS: A case control study matched by age with 169 cases and 477 controls. The study population consisted of adolescents and older children from Recife, Brazil. Cases were individuals diagnosed with tuberculosis in the control programme and controls were selected in the neighborhood of cases. Conditional logistic regression was used to identify risk factors. RESULTS: Cigarette smoking increased by 50% the risk of tuberculosis but that this was not statistically significant (OR = 1.6). Other risk factors were sleeping in the same house as a case of tuberculosis (OR = 31.6), living in a house with no piped water (OR = 7.7) (probably as a proxy for bad living conditions), illiteracy (OR = 3.7) and male sex (OR = 1.8). The increase in risk with living in houses with no piped water was much more marked in males. The proportion of cases of tuberculosis attributed to contact with someone with TB was 38% and to illiteracy, lack of piped water and smoking, 20%. CONCLUSION: Household contact with tuberculosis, social factors and male sex play the biggest role in determining risk of TB disease among children and adolescents in the study. We recommend further research on the relationship of cigarette smoking on tuberculosis in adolescents, and on whether the sex differentials are more marked in bad living conditions. Separate studies should be conducted in older children and in adolescents
Validation of a food frequency questionnaire for children and adolescents aged 4 to 11 years living in Salvador, Bahia.
OBJECTIVE: To assess the validity of a food frequency questionnaire (FFQ) by applying it to children and adolescents living in Salvador, Bahia. METHODS: The validity of this FFQ with 98 food items was investigated among 108 children and adolescents who were selected from a sample of 1445 that had been planned for a study on the risk factors for asthma and other allergic diseases. The adults responsible for these children and adolescents gave responses for a 24-hour recall (R24h) and an FFQ. The average energy and nutrient values from the FFQ were compared with those from the R24h by means of the paired t test and Pearson correlation coefficients. The concordance was evaluated using the Bland-Altman method and kappa statistics. RESULTS: The energy and nutrient intake estimated using the FFQ was significantly higher than what was obtained using the R24h. The correlation coefficients adjusted for energy were statistically significant for protein, fat, vitamin C and zinc. The weighted kappa values ranged from 0.06 for vitamin A (p = 0.24) to 0.34 for energy (p < 0.00). The results from the Bland-Altman plots for lipid, protein and zinc showed the most significant validity parameters, and zinc was found to show the best concordance. CONCLUSION: The results suggest that the FFQ showed satisfactory validity for use in studies involving children and adolescents
Selection bias: neighbourhood controls and controls selected from those presenting to a Health Unit in a case control study of efficacy of BCG revaccination.
BACKGROUND: In most case control studies the hardest decision is the choice of the control group, as in the ideal control group the proportion exposed is the same as in the population that produced the cases. METHODS: A comparison of two control groups in a case control study of the efficacy of BCG revaccination. One group was selected from subjects presenting to the heath unit the case attended for routine prevention and care; the second group was selected from the neighbourhood of cases. All Health Units from which controls were selected offered BCG revaccination. Efficacy estimated in a randomized control trial of BCG revaccination was used to establish that the neighbourhood control group was the one that gave unbiased results. RESULTS: The proportion of controls with scars indicating BCG revaccination was higher among the control group selected from Health Unit attenders than among neighbourhood controls. This excess was not removed after control for social variables and history of exposure to tuberculosis, and appears to have resulted from the fact that people attending the Health Unit were more likely to have been revaccinated than neighbourhood controls, although we can not exclude an effect of other unmeasured variables. CONCLUSION: In this study, controls selected from people presenting to a Health Unit overrepresented exposure to BCG revaccination. Had the results from the HU attenders control group been accepted this would have resulted in overestimation of vaccine efficacy. When the exposure of interest is offered in a health facility, selection of controls from attenders at the facility may result in over representation of exposure in controls and selection bias
Universal Vectorial and Ultrasensitive Nanomechanical Force Field Sensor
Miniaturization of force probes into nanomechanical oscillators enables
ultrasensitive investigations of forces on dimensions smaller than their
characteristic length scale. Meanwhile it also unravels the force field
vectorial character and how its topology impacts the measurement. Here we
expose an ultrasensitive method to image 2D vectorial force fields by
optomechanically following the bidimensional Brownian motion of a singly
clamped nanowire. This novel approach relies on angular and spectral tomography
of its quasi frequency-degenerated transverse mechanical polarizations:
immersing the nanoresonator in a vectorial force field does not only shift its
eigenfrequencies but also rotate eigenmodes orientation as a nano-compass. This
universal method is employed to map a tunable electrostatic force field whose
spatial gradients can even take precedence over the intrinsic nanowire
properties. Enabling vectorial force fields imaging with demonstrated
sensitivities of attonewton variations over the nanoprobe Brownian trajectory
will have strong impact on scientific exploration at the nanoscale
Genome-wide signatures of complex introgression and adaptive evolution in the big cats.
The great cats of the genus Panthera comprise a recent radiation whose evolutionary history is poorly understood. Their rapid diversification poses challenges to resolving their phylogeny while offering opportunities to investigate the historical dynamics of adaptive divergence. We report the sequence, de novo assembly, and annotation of the jaguar (Panthera onca) genome, a novel genome sequence for the leopard (Panthera pardus), and comparative analyses encompassing all living Panthera species. Demographic reconstructions indicated that all of these species have experienced variable episodes of population decline during the Pleistocene, ultimately leading to small effective sizes in present-day genomes. We observed pervasive genealogical discordance across Panthera genomes, caused by both incomplete lineage sorting and complex patterns of historical interspecific hybridization. We identified multiple signatures of species-specific positive selection, affecting genes involved in craniofacial and limb development, protein metabolism, hypoxia, reproduction, pigmentation, and sensory perception. There was remarkable concordance in pathways enriched in genomic segments implicated in interspecies introgression and in positive selection, suggesting that these processes were connected. We tested this hypothesis by developing exome capture probes targeting ~19,000 Panthera genes and applying them to 30 wild-caught jaguars. We found at least two genes (DOCK3 and COL4A5, both related to optic nerve development) bearing significant signatures of interspecies introgression and within-species positive selection. These findings indicate that post-speciation admixture has contributed genetic material that facilitated the adaptive evolution of big cat lineages
Midgut microbiota of the malaria mosquito vector Anopheles gambiae and Interactions with plasmodium falciparum Infection
The susceptibility of Anopheles mosquitoes to Plasmodium infections relies on complex interactions between the insect vector and the malaria parasite. A number of studies have shown that the mosquito innate immune responses play an important role in controlling the malaria infection and that the strength of parasite clearance is under genetic control, but little is known about the influence of environmental factors on the transmission success. We present here evidence that the composition of the vector gut microbiota is one of the major components that determine the outcome of mosquito infections. A. gambiae mosquitoes collected in natural breeding sites from Cameroon were experimentally challenged with a wild P. falciparum isolate, and their gut bacterial content was submitted for pyrosequencing analysis. The meta-taxogenomic approach revealed a broader richness of the midgut bacterial flora than previously described. Unexpectedly, the majority of bacterial species were found in only a small proportion of mosquitoes, and only 20 genera were shared by 80% of individuals. We show that observed differences in gut bacterial flora of adult mosquitoes is a result of breeding in distinct sites, suggesting that the native aquatic source where larvae were grown determines the composition of the midgut microbiota. Importantly, the abundance of Enterobacteriaceae in the mosquito midgut correlates significantly with the Plasmodium infection status. This striking relationship highlights the role of natural gut environment in parasite transmission. Deciphering microbe-pathogen interactions offers new perspectives to control disease transmission.Institut de Recherche pour le Developpement (IRD); French Agence Nationale pour la Recherche [ANR-11-BSV7-009-01]; European Community [242095, 223601]info:eu-repo/semantics/publishedVersio
Assessment of table olives' organoleptic defect intensities based on the potentiometric fingerprint recorded by an electronic tongue
Table olives are prone to the appearance of sensory defects that decrease their quality and in some cases result in olives unsuitable for consumption. The evaluation of the type and intensity of the sensory negative attributes of table olives is recommended by the International Olive Council, although not being legally required for commercialization. However, the accomplishment of this task requires the training and implementation of sensory panels according to strict directives, turning out in a time-consuming and expensive procedure that involves a degree of subjectivity. In this work, an electronic tongue is proposed as a taste sensor device for evaluating the intensity of sensory defects of table olives. The potentiometric signal profiles gathered allowed establishing multiple linear regression models, based on the most informative subsets of signals (from 24 to 29 recorded during the analysis of olive aqueous pastes and brine solutions) selected using a simulated annealing meta-heuristic algorithm. The models enabled the prediction of the median intensities (R2 ≥ 0.942 and RMSE ≤ 0.356, for leave-one-out or repeated K-fold cross-validation procedures) of butyric, musty, putrid, winey-vinegary, and zapateria negative sensations being, in general, the predicted intensities within the range of intensities perceived by the sensory panel. Indeed, based on the predicted mean intensities of the sensory defects, the electrochemical-chemometric approach developed could correctly classify 86.4% of the table olive samples according to their trade category based on a sensory panel evaluation and following the International Olive Council regulations (i.e., extra, 1st choice, 2nd choice, and olives that may not be sold as table olives). So, the satisfactory overall predictions achieved demonstrate that the electronic tongue could be a complementary tool for assessing table olive defects, reducing the effort of trained panelists and minimizing the risk of subjective evaluations.This work was financially supported by Project POCI-01-0145-FEDER-006984—Associate Laboratory LSRE-LCM, by Project UID/QUI/00616/2013 —CQ-VR, and UID/AGR/00690/ 2013—CIMO, all funded by Fundo Europeu de Desenvolvimento Regional (FEDER) through COMPETE2020—Programa Operacional Competitividade e Internacionalização (POCI) and by national funds through Fundação para a Ciência e a Tecnologia (FCT), Portugal. Strategic funding of UID/BIO/04469/2013 unit is also acknowledged. Nuno Rodrigues thanks FCT, POPH-QREN, and FSE for the Ph.D. Grant (SFRH/BD/104038/2014).info:eu-repo/semantics/publishedVersio
Quality control and beam test of GEM detectors for future upgrades of the CMS muon high rate region at the LHC
Gas Electron Multipliers (GEM) are a proven position sensitive gas detector technology which nowadays is becoming more widely used in High Energy Physics. GEMs offer an excellent spatial resolution and a high particle rate capability, with a close to 100% detection efficiency. In view of the high luminosity phase of the CERN Large Hadron Collider, these aforementioned features make GEMs suitable candidates for the future upgrades of the Compact Muon Solenoid (CMS) detector. In particular, the CMS GEM Collaboration proposes to cover the high-eta region of the muon system with large-area triple-GEM detectors, which have the ability to provide robust and redundant tracking and triggering functions. In this contribution, after a general introduction and overview of the project, the construction of full-size trapezoidal triple-GEM prototypes will be described in more detail. The procedures for the quality control of the GEM foils, including gain uniformity measurements with an x-ray source will be presented. In the past few years, several CMS triple-GEM prototype detectors were operated with test beams at the CERN SPS. The results of these test beam campaigns will be summarised
Evaluation of extra-virgin olive oils shelf life using an electronic tongue-chemometric approach
Physicochemical quality parameters, olfactory and gustatoryretronasal positive sensations of extra-virgin olive oils vary during storage leading to a decrease in the overall quality. Olive oil quality decline may prevent the compliance of olive oil quality with labeling and significantly reduce shelf life, resulting in important economic losses and negatively condition the consumer confidence. The feasibility of applying an electronic tongue to assess olive oils usual commercial light storage conditions and storage time was evaluated and compared with the discrimination potential of physicochemical or positive olfactory/gustatory sensorial parameters. Linear discriminant models, based on subsets of 58 electronic tongue sensor signals, selected by the meta-heuristic simulated annealing variable selection algorithm, allowed the correct classification of olive oils according to the light exposition conditions and/or storage time (sensitivities and specificities for leave-one-out cross-validation: 8296 %). The predictive performance of the E-tongue approach was further evaluated using an external independent dataset selected using the KennardStone algorithm and, in general, better classification rates (sensitivities and specificities for external dataset: 67100 %) were obtained compared to those achieved using physicochemical or sensorial data. So, the work carried out is a proof-of-principle that the proposed electrochemical device could be a practical and versatile tool for, in a single and fast electrochemical assay, successfully discriminate olive oils with different storage times and/or exposed to different light conditions.The authors acknowledge the financial support from the strategic funding of UID/BIO/04469/2013 unit, from Project POCI-01-0145-FEDER-006984—Associate Laboratory LSRELCM funded by FEDER funds through COMPETE2020—Programa Operacional Competitividade e Internacionalização (POCI)—and by national funds through FCT—Fundação para a Ciência e a Tecnologia and under the strategic funding of UID/BIO/04469/2013 unit. Nuno Rodrigues thanks FCT, POPH-QREN and FSE for the Ph.D. Grant (SFRH/BD/104038/2014).info:eu-repo/semantics/publishedVersio
Luminance, colour, viewpoint and border enhanced disparity energy model
The visual cortex is able to extract disparity information through the use of binocular cells. This process is reflected by the Disparity Energy Model, which describes the role and functioning of simple and complex binocular neuron populations, and how they are able to extract disparity. This model uses explicit cell parameters to mathematically determine preferred cell disparities, like spatial frequencies, orientations, binocular phases and receptive field positions. However, the brain cannot access such explicit cell parameters; it must rely on cell responses. In this article, we implemented a trained binocular neuronal population, which encodes disparity information implicitly. This allows the population to learn how to decode disparities, in a similar way to how our visual system could have developed this ability during evolution. At the same time, responses of monocular simple and complex cells can also encode line and edge information, which is useful for refining disparities at object borders. The brain should then be able, starting from a low-level disparity draft, to integrate all information, including colour and viewpoint perspective, in order to propagate better estimates to higher cortical areas.Portuguese Foundation for Science and Technology (FCT); LARSyS FCT [UID/EEA/50009/2013]; EU project NeuroDynamics [FP7-ICT-2009-6, PN: 270247]; FCT project SparseCoding [EXPL/EEI-SII/1982/2013]; FCT PhD grant [SFRH-BD-44941-2008
- …
