6,138 research outputs found
Pedestrian Trajectory Prediction with Structured Memory Hierarchies
This paper presents a novel framework for human trajectory prediction based
on multimodal data (video and radar). Motivated by recent neuroscience
discoveries, we propose incorporating a structured memory component in the
human trajectory prediction pipeline to capture historical information to
improve performance. We introduce structured LSTM cells for modelling the
memory content hierarchically, preserving the spatiotemporal structure of the
information and enabling us to capture both short-term and long-term context.
We demonstrate how this architecture can be extended to integrate salient
information from multiple modalities to automatically store and retrieve
important information for decision making without any supervision. We evaluate
the effectiveness of the proposed models on a novel multimodal dataset that we
introduce, consisting of 40,000 pedestrian trajectories, acquired jointly from
a radar system and a CCTV camera system installed in a public place. The
performance is also evaluated on the publicly available New York Grand Central
pedestrian database. In both settings, the proposed models demonstrate their
capability to better anticipate future pedestrian motion compared to existing
state of the art.Comment: To appear in ECML-PKDD 201
On colouring point visibility graphs
In this paper we show that it can be decided in polynomial time whether or
not the visibility graph of a given point set is 4-colourable, and such a
4-colouring, if it exists, can also be constructed in polynomial time. We show
that the problem of deciding whether the visibility graph of a point set is
5-colourable, is NP-complete. We give an example of a point visibility graph
that has chromatic number 6 while its clique number is only 4
Prior test experience produces changes of t-patterns spatial distribution in the elevated plus maze test
Aim of present research was to investigate in male Wistar rats whether a prior elevated plus maze experience modifies the temporal structure of the behavioral response following a retest applied after 24h. Video files were coded by means of a software coder and event log files generated for each subject were analyzed by means of a specific software for temporal pattern analysis (Theme). Present research shows a clear reduction of the number of t-patterns from trial one to trial two. This reduction is provoked by the disappearance of t-patterns consisting of behavioral elements occurring in the unprotected zones of the maze. The results suggest that the previous experience in the maze causes learning-dependent behavioral changes inducing a more clear-cut response to
environmental anxiogenic conditions
Insights into enterotoxigenic Escherichia coli diversity in Bangladesh utilizing genomic epidemiology
Cascaded two-photon nonlinearity in a one-dimensional waveguide with multiple two-level emitters
We propose and theoretically investigate a model to realize cascaded optical
nonlinearity with few atoms and photons in one-dimension (1D). The optical
nonlinearity in our system is mediated by resonant interactions of photons with
two-level emitters, such as atoms or quantum dots in a 1D photonic waveguide.
Multi-photon transmission in the waveguide is nonreciprocal when the emitters
have different transition energies. Our theory provides a clear physical
understanding of the origin of nonreciprocity in the presence of cascaded
nonlinearity. We show how various two-photon nonlinear effects including
spatial attraction and repulsion between photons, background fluorescence can
be tuned by changing the number of emitters and the coupling between emitters
(controlled by the separation).Comment: 6 pages, 4 figure
Early formation of carbon monoxide in the Centaurus A supernova SN 2016adj
We present near-infrared spectroscopy of the NGC 5128 supernova SN 2016adj in the first 2 months following discovery. We report the detection of first overtone carbon monoxide emission at ∼58.2 d after discovery, one of the earliest detections of CO in an erupting supernova. We model the CO emission to derive the CO mass, temperature and velocity, assuming both pure 12CO and a composition that includes 13CO; the case for the latter is the isotopic analyses of meteoritic grains, which suggest that core collapse supernovae can synthesise significant amounts of 13C. Our models show that, while the CO data are adequately explained by pure 12CO, they do not preclude the presence of 13CO, to a limit of 12C/13C>3, the first constraint on the 12C/13C ratio determined from near-infrared observations. We estimate the reddening to the object, and the effective temperature from the energy distribution at outburst. We discuss whether the ejecta of SN 2016adj may be carbon-rich, what the infrared data tell us about the classification of this supernova, and what implications the early formation of CO in supernovae may have for CO formation in supernovae in general
Serum methylarginines and spirometry-measured lung function in older adults
Rationale: Methylarginines are endogenous nitric oxide synthase inhibitors that have been implicated in animal models of lung disease but have not previously been examined for their association with spirometric measures of lung function in humans.
Objectives: This study measured serum concentrations of asymmetric and symmetric dimethylarginine in a representative sample of older community-dwelling adults and determined their association with spirometric lung function measures.
Methods: Data on clinical, lifestyle, and demographic characteristics, methylated arginines, and L-arginine (measured using LC-MS/MS) were collected from a population-based sample of older Australian adults from the Hunter Community Study.
The five key lung function measures included as outcomes were Forced Expiratory Volume in 1 second, Forced Vital Capacity, Forced Expiratory Volume in 1 second to Forced Vital Capacity ratio, Percent Predicted Forced Expiratory Volume in 1 second, and Percent Predicted Forced Vital Capacity.
Measurements and Main Results: In adjusted analyses there were statistically significant independent associations between a) higher asymmetric dimethylarginine, lower Forced Expiratory Volume in 1 second and lower Forced Vital Capacity; and b) lower L-arginine/asymmetric dimethylarginine ratio, lower Forced Expiratory Volume in 1 second, lower Percent Predicted Forced Expiratory Volume in 1 second and lower Percent Predicted Forced Vital Capacity. By contrast, no significant associations were observed between symmetric dimethylarginine and lung function.
Conclusions: After adjusting for clinical, demographic, biochemical, and pharmacological confounders, higher serum asymmetric dimethylarginine was independently associated with a reduction in key measures of lung function. Further research is needed to determine if methylarginines predict the decline in lung function
Probing top charged-Higgs production using top polarization at the Large Hadron Collider
We study single top production in association with a charged Higgs in the
type II two Higgs doublet model at the Large Hadron Collider. The polarization
of the top, reflected in the angular distributions of its decay products, can
be a sensitive probe of new physics in its production. We present theoretically
expected polarizations of the top for top charged-Higgs production, which is
significantly different from that in the closely related process of t-W
production in the Standard Model. We then show that an azimuthal symmetry,
constructed from the decay lepton angular distribution in the laboratory frame,
is a sensitive probe of top polarization and can be used to constrain
parameters involved in top charged-Higgs production.Comment: 22 pages, 18 Figures, Discussions about backgrounds and NLO
corrections added, figures modified, references added, Version published in
JHE
Photonic Analogue of Two-dimensional Topological Insulators and Helical One-Way Edge Transport in Bi-Anisotropic Metamaterials
Recent progress in understanding the topological properties of condensed
matter has led to the discovery of time-reversal invariant topological
insulators. Because of limitations imposed by nature, topologically non-trivial
electronic order seems to be uncommon except in small-band-gap semiconductors
with strong spin-orbit interactions. In this Article we show that artificial
electromagnetic structures, known as metamaterials, provide an attractive
platform for designing photonic analogues of topological insulators. We
demonstrate that a judicious choice of the metamaterial parameters can create
photonic phases that support a pair of helical edge states, and that these edge
states enable one-way photonic transport that is robust against disorder.Comment: 13 pages, 3 figure
Increased chromosomal radiosensitivity in asymptomatic carriers of a heterozygous BRCA1 mutation
Background: Breast cancer risk increases drastically in individuals carrying a germline BRCA1 mutation. The exposure to ionizing radiation for diagnostic or therapeutic purposes of BRCA1 mutation carriers is counterintuitive, since BRCA1 is active in the DNA damage response pathway. The aim of this study was to investigate whether healthy BRCA1 mutations carriers demonstrate an increased radiosensitivity compared with healthy individuals.
Methods: We defined a novel radiosensitivity indicator (RIND) based on two endpoints measured by the G2 micronucleus assay, reflecting defects in DNA repair and G2 arrest capacity after exposure to doses of 2 or 4 Gy. We investigated if a correlation between the RIND score and nonsense-mediated decay (NMD) could be established.
Results: We found significantly increased radiosensitivity in the cohort of healthy BRCA1 mutation carriers compared with healthy controls. In addition, our analysis showed a significantly different distribution over the RIND scores (p = 0.034, Fisher’s exact test) for healthy BRCA1 mutation carriers compared with non-carriers: 72 % of mutation carriers showed a radiosensitive phenotype (RIND score 1–4), whereas 72 % of the healthy volunteers showed no radiosensitivity (RIND score 0). Furthermore, 28 % of BRCA1 mutation carriers had a RIND score of 3 or 4 (not observed in control subjects). The radiosensitive phenotype was similar for relatives within several families, but not for unrelated individuals carrying the same mutation. The median RIND score was higher in patients with a mutation leading to a premature termination codon (PTC) located in the central part of the gene than in patients with a germline mutation in the 5′ end of the gene.
Conclusions: We show that BRCA1 mutations are associated with a radiosensitive phenotype related to a compromised DNA repair and G2 arrest capacity after exposure to either 2 or 4 Gy. Our study confirms that haploinsufficiency is the mechanism involved in radiosensitivity in patients with a PTC allele, but it suggests that further research is needed to evaluate alternative mechanisms for mutations not subjected to NMD
- …
