16 research outputs found

    Positive and negative well-being and objectively measured sedentary behaviour in older adults: evidence from three cohorts

    Get PDF
    Background: Sedentary behaviour is related to poorer health independently of time spent in moderate to vigorous physical activity. The aim of this study was to investigate whether wellbeing or symptoms of anxiety or depression predict sedentary behaviour in older adults. Method: Participants were drawn from the Lothian Birth Cohort 1936 (LBC1936) (n = 271), and the West of Scotland Twenty-07 1950s (n = 309) and 1930s (n = 118) cohorts. Sedentary outcomes, sedentary time, and number of sit-to-stand transitions, were measured with a three-dimensional accelerometer (activPAL activity monitor) worn for 7 days. In the Twenty-07 cohorts, symptoms of anxiety and depression were assessed in 2008 and sedentary outcomes were assessed ~ 8 years later in 2015 and 2016. In the LBC1936 cohort, wellbeing and symptoms of anxiety and depression were assessed concurrently with sedentary behaviour in 2015 and 2016. We tested for an association between wellbeing, anxiety or depression and the sedentary outcomes using multivariate regression analysis. Results: We observed no association between wellbeing or symptoms of anxiety and the sedentary outcomes. Symptoms of depression were positively associated with sedentary time in the LBC1936 and Twenty-07 1950s cohort, and negatively associated with number of sit-to-stand transitions in the LBC1936. Meta-analytic estimates of the association between depressive symptoms and sedentary time or number of sit-to-stand transitions, adjusted for age, sex, BMI, long-standing illness, and education, were β = 0.11 (95% CI = 0.03, 0.18) and β = − 0.11 (95% CI = − 0.19, −0.03) respectively. Conclusion: Our findings indicate that depressive symptoms are positively associated with sedentary behavior. Future studies should investigate the causal direction of this association

    Children’s sedentary behaviour: descriptive epidemiology and associations with objectively-measured sedentary time

    Get PDF
    Background: Little is known regarding the patterning and socio-demographic distribution of multiple sedentary behaviours in children. The aims of this study were to: 1) describe the leisure-time sedentary behaviour of 9-10 year old British children, and 2) establish associations with objectively-measured sedentary time. Methods: Cross-sectional analysis in the SPEEDY study (Sport, Physical activity and Eating behaviour: Environmental Determinants in Young people) (N=1513, 44.3% boys). Twelve leisure-time sedentary behaviours were assessed by questionnaire. Objectively-measured leisure-time sedentary time (Actigraph GT1M, <100 counts/minute) was assessed over 7 days. Differences by sex and socioeconomic status (SES) in self-reported sedentary behaviours were tested using Kruskal-Wallis tests. The association between objectively-measured sedentary time and the separate sedentary behaviours (continuous (minutes) and categorised into 'none' 'low' or 'high' participation) was assessed using multi-level linear regression. Results: Sex differences were observed for time spent in most sedentary behaviours (all p ≤ 0.02), except computer use. Girls spent more time in combined non-screen sedentary behaviour (median, interquartile range: girls: 770.0 minutes, 390.0-1230.0; boys: 725.0, 365.0 - 1182.5; p = 0.003), whereas boys spent more time in screen-based behaviours (girls: 540.0, 273.0 - 1050.0; boys: 885.0, 502.5 - 1665.0; p < 0.001). Time spent in five non-screen behaviours differed by SES, with higher values in those of higher SES (all p ≤ 0.001). Regression analyses with continuous exposures indicated that reading (β = 0.1, p < 0.001) and watching television (β = 0.04, p < 0.01) were positively associated with objectively-measured sedentary time, whilst playing board games (β = -0.12, p < 0.05) was negatively associated. Analysed in categorical form, sitting and talking (vs. none: 'low' β = 26.1,ns; 'high' 30.9, p < 0.05), playing video games (vs. none: 'low' β = 49.1, p < 0.01; 'high' 60.2, p < 0.01) and watching television (vs. lowest tertile: middle β = 22.2,ns; highest β = 31.9, p < 0.05) were positively associated with objectively-measured sedentary time whereas talking on the phone (vs. none: 'low' β = -38.5, p < 0.01; 'high' -60.2, p < 0.01) and using a computer/internet (vs. none: 'low' β = -30.7, p < 0.05; 'high' -4.2,ns) were negatively associated. Conclusions: Boys and girls and children of different socioeconomic backgrounds engage in different leisure-time sedentary behaviours. Whilst a number of behaviours may be predictive of total sedentary time, collectively they explain little overall variance. Future studies should consider a wide range of sedentary behaviours and incorporate objective measures to quantify sedentary time where possible
    corecore