824 research outputs found
Common Variants at 10 Genomic Loci Influence Hemoglobin A(1C) Levels via Glycemic and Nonglycemic Pathways
OBJECTIVE Glycated hemoglobin (HbA1c), used to monitor and diagnose diabetes, is influenced by average glycemia over a 2- to 3-month period. Genetic factors affecting expression, turnover, and abnormal glycation of hemoglobin could also be associated with increased levels of HbA1c. We aimed to identify such genetic factors and investigate the extent to which they influence diabetes classification based on HbA1c levels.
RESEARCH DESIGN AND METHODS We studied associations with HbA1c in up to 46,368 nondiabetic adults of European descent from 23 genome-wide association studies (GWAS) and 8 cohorts with de novo genotyped single nucleotide polymorphisms (SNPs). We combined studies using inverse-variance meta-analysis and tested mediation by glycemia using conditional analyses. We estimated the global effect of HbA1c loci using a multilocus risk score, and used net reclassification to estimate genetic effects on diabetes screening.
RESULTS Ten loci reached genome-wide significant association with HbA1c, including six new loci near FN3K (lead SNP/P value, rs1046896/P = 1.6 × 10−26), HFE (rs1800562/P = 2.6 × 10−20), TMPRSS6 (rs855791/P = 2.7 × 10−14), ANK1 (rs4737009/P = 6.1 × 10−12), SPTA1 (rs2779116/P = 2.8 × 10−9) and ATP11A/TUBGCP3 (rs7998202/P = 5.2 × 10−9), and four known HbA1c loci: HK1 (rs16926246/P = 3.1 × 10−54), MTNR1B (rs1387153/P = 4.0 × 10−11), GCK (rs1799884/P = 1.5 × 10−20) and G6PC2/ABCB11 (rs552976/P = 8.2 × 10−18). We show that associations with HbA1c are partly a function of hyperglycemia associated with 3 of the 10 loci (GCK, G6PC2 and MTNR1B). The seven nonglycemic loci accounted for a 0.19 (% HbA1c) difference between the extreme 10% tails of the risk score, and would reclassify ∼2% of a general white population screened for diabetes with HbA1c.
CONCLUSIONS GWAS identified 10 genetic loci reproducibly associated with HbA1c. Six are novel and seven map to loci where rarer variants cause hereditary anemias and iron storage disorders. Common variants at these loci likely influence HbA1c levels via erythrocyte biology, and confer a small but detectable reclassification of diabetes diagnosis by HbA1c
Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector
Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente
Continuation for thin film hydrodynamics and related scalar problems
This chapter illustrates how to apply continuation techniques in the analysis
of a particular class of nonlinear kinetic equations that describe the time
evolution through transport equations for a single scalar field like a
densities or interface profiles of various types. We first systematically
introduce these equations as gradient dynamics combining mass-conserving and
nonmass-conserving fluxes followed by a discussion of nonvariational amendmends
and a brief introduction to their analysis by numerical continuation. The
approach is first applied to a number of common examples of variational
equations, namely, Allen-Cahn- and Cahn-Hilliard-type equations including
certain thin-film equations for partially wetting liquids on homogeneous and
heterogeneous substrates as well as Swift-Hohenberg and Phase-Field-Crystal
equations. Second we consider nonvariational examples as the
Kuramoto-Sivashinsky equation, convective Allen-Cahn and Cahn-Hilliard
equations and thin-film equations describing stationary sliding drops and a
transversal front instability in a dip-coating. Through the different examples
we illustrate how to employ the numerical tools provided by the packages
auto07p and pde2path to determine steady, stationary and time-periodic
solutions in one and two dimensions and the resulting bifurcation diagrams. The
incorporation of boundary conditions and integral side conditions is also
discussed as well as problem-specific implementation issues
The Relationship Between Therapist Effects and Therapy Delivery Factors: Therapy Modality, Dosage, and Non-completion.
To consider the relationships between, therapist variability, therapy modality, therapeutic dose and therapy ending type and assess their effects on the variability of patient outcomes. Multilevel modeling was used to analyse a large sample of routinely collected data. Model residuals identified more and less effective therapists, controlling for case-mix. After controlling for case mix, 5.8 % of the variance in outcome was due to therapists. More sessions generally improved outcomes, by about half a point on the PHQ-9 for each additional session, while non-completion of therapy reduced the amount of pre-post change by six points. Therapy modality had little effect on outcome. Patient and service outcomes may be improved by greater focus on the variability between therapists and in keeping patients in therapy to completion
Patient-directed self-management of pain (PaDSMaP) compared to treatment as usual following total knee replacement; a randomised controlled trial
Background Self-administration of medicines by patients whilst in hospital is being increasingly promoted despite little evidence to show the risks and benefits. Pain control after total knee replacement (TKR) is known to be poor. The aim of the study was to determine if patients operated on with a TKR who self-medicate their oral analgesics in the immediate post-operative period have better pain control than those who receive their pain control by nurse-led drug rounds (Treatment as Usual (TAU)). Methods A prospective, parallel design, open-label, randomised controlled trial comparing pain control in patient-directed self-management of pain (PaDSMaP) with nurse control of oral analgesia (TAU) after a TKR. Between July 2011 and March 2013, 144 self-medicating adults were recruited at a secondary care teaching hospital in the UK. TAU patients (n = 71) were given medications by a nurse after their TKR. PaDSMaP patients (n = 73) took oral medications for analgesia and co-morbidities after two 20 min training sessions reinforced with four booklets. Primary outcome was pain (100 mm visual analogue scale (VAS)) at 3 days following TKR surgery or at discharge (whichever came soonest). Seven patients did not undergo surgery for reasons unrelated to the study and were excluded from the intention-to-treat (ITT) analysis. Results ITT analysis did not detect any significant differences between the two groups’ pain scores. A per protocol (but underpowered) analysis of the 60% of patients able to self-medicate found reduced pain compared to the TAU group at day 3/discharge, (VAS -9.9 mm, 95% CI -18.7, − 1.1). One patient in the self-medicating group over-medicated but suffered no harm. Conclusion Self-medicating patients did not have better (lower) pain scores compared to the nurse-managed patients following TKR. This cohort of patients were elderly with multiple co-morbidities and may not be the ideal target group for self-medication
Research into the Health Benefits of Sprint Interval Training Should Focus on Protocols with Fewer and Shorter Sprints
Over the past decade, it has been convincingly shown that regularly performing repeated brief supramaximal cycle sprints (sprint interval training [SIT]) is associated with aerobic adaptations and health benefits similar to or greater than with moderate-intensity continuous training (MICT). SIT is often promoted as a time-efficient exercise strategy, but the most commonly studied SIT protocol (4–6 repeated 30-s Wingate sprints with 4 min recovery, here referred to as ‘classic’ SIT) takes up to approximately 30 min per session. Combined with high associated perceived exertion, this makes classic SIT unsuitable as an alternative/adjunct to current exercise recommendations involving MICT. However, there are no indications that the design of the classic SIT protocol has been based on considerations regarding the lowest number or shortest duration of sprints to optimise time efficiency while retaining the associated health benefits. In recent years, studies have shown that novel SIT protocols with both fewer and shorter sprints are efficacious at improving important risk factors of noncommunicable diseases in sedentary individuals, and provide health benefits that are no worse than those associated with classic SIT. These shorter/easier protocols have the potential to remove many of the common barriers to exercise in the general population. Thus, based on the evidence summarised in this current opinion paper, we propose that there is a need for a fundamental change in focus in SIT research in order to move away from further characterising the classic SIT protocol and towards establishing acceptable and effective protocols that involve minimal sprint durations and repetitions
Biology of human hair: Know your hair to control it
Hair can be engineered at different levels—its structure and surface—through modification of its constituent molecules, in particular proteins, but also the hair follicle (HF) can be genetically altered, in particular with the advent of siRNA-based applications. General aspects of hair biology are reviewed, as well as the most recent contributions to understanding hair pigmentation and the regulation of hair development. Focus will also be placed on the techniques developed specifically for delivering compounds of varying chemical nature to the HF, indicating methods for genetic/biochemical modulation of HF components for the treatment of hair diseases. Finally, hair fiber structure and chemical characteristics will be discussed as targets for keratin surface functionalization
Protein disulphide isomerase-assisted functionalization of proteinaceous substrates
Protein disulphide isomerase (PDI) is an enzyme that catalyzes thiol-disulphide exchange reactions among a broad spectrum of substrates, including proteins and low-molecular thiols and disulphides. As the first protein-folding catalyst reported, the study of PDI has mainly involved the correct folding of several cysteine-containing proteins. Its application on the functionalization of protein-based materials has not been extensively reported. Herein, we review the applications of PDI on the modification of proteinaceous substrates and discuss its future potential. The mechanism involved in PDI functionalization of fibrous protein substrates is discussed in detail. These approaches allow innovative applications in textile dyeing and finishing, medical textiles, controlled drug delivery systems and hair or skin care products.We thank to FCT 'Fundacao para a Ciencia e Tecnologia' (scholarship SFRH/BD/38363/2007) for providing Margarida Fernandes the grant for PhD studies
Search for supersymmetry in events with four or more leptons in √s =13 TeV pp collisions with ATLAS
Results from a search for supersymmetry in events with four or more charged leptons (electrons, muons and taus) are presented. The analysis uses a data sample corresponding to 36.1 fb −1 of proton-proton collisions delivered by the Large Hadron Collider at s √ =13 TeV and recorded by the ATLAS detector. Four-lepton signal regions with up to two hadronically decaying taus are designed to target a range of supersymmetric scenarios that can be either enriched in or depleted of events involving the production and decay of a Z boson. Data yields are consistent with Standard Model expectations and results are used to set upper limits on the event yields from processes beyond the Standard Model. Exclusion limits are set at the 95% confidence level in simplified models of General Gauge Mediated supersymmetry, where higgsino masses are excluded up to 295 GeV. In R -parity-violating simplified models with decays of the lightest supersymmetric particle to charged leptons, lower limits of 1.46 TeV, 1.06 TeV, and 2.25 TeV are placed on wino, slepton and gluino masses, respectively
Measurements of integrated and differential cross sections for isolated photon pair production in pp collisions at √s=8 TeV with the ATLAS detector
A measurement of the production cross section for two isolated photons in proton-proton collisions at a center-of-mass energy of √s=8 TeV is presented. The results are based on an integrated luminosity of 20.2 fb−1 recorded by the ATLAS detector at the Large Hadron Collider. The measurement considers photons with pseudorapidities satisfying |ηγ|40GeV and EγT,2>30 GeV for the two leading photons ordered in transverse energy produced in the interaction. The background due to hadronic jets and electrons is subtracted using data-driven techniques. The fiducial cross sections are corrected for detector effects and measured differentially as a function of six kinematic observables. The measured cross section integrated within the fiducial volume is 16.8 ± 0.8 pb . The data are compared to fixed-order QCD calculations at next-to-leading-order and next-to-next-to-leading-order accuracy as well as next-to-leading-order computations including resummation of initial-state gluon radiation at next-to-next-to-leading logarithm or matched to a parton shower, with relative uncertainties varying from 5% to 20%
- …
