1,052 research outputs found
A Triple Protostar System Formed via Fragmentation of a Gravitationally Unstable Disk
Binary and multiple star systems are a frequent outcome of the star formation
process, and as a result, almost half of all sun-like stars have at least one
companion star. Theoretical studies indicate that there are two main pathways
that can operate concurrently to form binary/multiple star systems: large scale
fragmentation of turbulent gas cores and filaments or smaller scale
fragmentation of a massive protostellar disk due to gravitational instability.
Observational evidence for turbulent fragmentation on scales of 1000~AU has
recently emerged. Previous evidence for disk fragmentation was limited to
inferences based on the separations of more-evolved pre-main sequence and
protostellar multiple systems. The triple protostar system L1448 IRS3B is an
ideal candidate to search for evidence of disk fragmentation. L1448 IRS3B is in
an early phase of the star formation process, likely less than 150,000 years in
age, and all protostars in the system are separated by 200~AU. Here we
report observations of dust and molecular gas emission that reveal a disk with
spiral structure surrounding the three protostars. Two protostars near the
center of the disk are separated by 61 AU, and a tertiary protostar is
coincident with a spiral arm in the outer disk at a 183 AU separation. The
inferred mass of the central pair of protostellar objects is 1 M,
while the disk surrounding the three protostars has a total mass of 0.30
M_{\sun}. The tertiary protostar itself has a minimum mass of 0.085
M. We demonstrate that the disk around L1448 IRS3B appears susceptible
to disk fragmentation at radii between 150~AU and 320~AU, overlapping with the
location of the tertiary protostar. This is consistent with models for a
protostellar disk that has recently undergone gravitational instability,
spawning one or two companion stars.Comment: Published in Nature on Oct. 27th. 24 pages, 8 figure
Study of decays to the final state and evidence for the decay
A study of decays is performed for the first time
using data corresponding to an integrated luminosity of 3.0
collected by the LHCb experiment in collisions at centre-of-mass energies
of and TeV. Evidence for the decay
is reported with a significance of 4.0 standard deviations, resulting in the
measurement of
to
be .
Here denotes a branching fraction while and
are the production cross-sections for and mesons.
An indication of weak annihilation is found for the region
, with a significance of
2.4 standard deviations.Comment: All figures and tables, along with any supplementary material and
additional information, are available at
https://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/LHCb-PAPER-2016-022.html,
link to supplemental material inserted in the reference
The empirical analysis of non-problematic video gaming and cognitive skills: a systematic review
Videogames have become one of the most popular leisure activities worldwide, including multiple game genres with different characteristics and levels of involvement required. Although a small minority of excessive players suffer detrimental consequences including impairment of several cognitive skills (e.g., inhibition, decision-making), it has also been demonstrated that playing videogames can improve different cognitive skills. Therefore, the current paper systematically reviewed the empirical studies experimentally investigating the positive impact of videogames on cognitive skills. Following a number of inclusion and exclusion criteria, a total of 32 papers were identified as empirically investigating three specific skills: taskswitching (eight studies), attentional control (22 studies), and sub-second time perception (two studies). Results demonstrated that compared to control groups, non-problematic use of videogames can lead to improved task-switching, more effective top-down attentional control and processing speed and increased sub-second time perception. Two studies highlighted the impact of gaming on cognitive skills differs depends upon game genre. The studies reviewed suggest that videogame play can have a positive impact on cognitive processes for players
Observation of Bc+ →j /ψD (∗)K (∗) decays
A search for the decays B+c→J/ψD(*)0K+ and B+c→J/ψD(*)+K*0 is performed with data collected at the LHCb experiment corresponding to an integrated luminosity of 3 fb−1. The decays B+c→J/ψ0K+ and B+c→J/ψD*0K+ are observed for the first time, while first evidence is reported for the B+c→JψD*+K*0 and B+c→J/ψD+K*0 decays. The branching fractions of these decays are determined relative to the B+c→J/ψπ+ decay. The B+c mass is measured, using the J/ψD0K+ final state, to be 6274.28±1.40(stat)±0.32(syst) MeV/c2. This is the most precise single measurement of the B+c mass to date
Lectin-Dependent Enhancement of Ebola Virus Infection via Soluble and Transmembrane C-type Lectin Receptors
Mannose-binding lectin (MBL) is a key soluble effector of the innate immune system that recognizes pathogen-specific surface glycans. Surprisingly, low-producing MBL genetic variants that may predispose children and immunocompromised individuals to infectious diseases are more common than would be expected in human populations. Since certain immune defense molecules, such as immunoglobulins, can be exploited by invasive pathogens, we hypothesized that MBL might also enhance infections in some circumstances. Consequently, the low and intermediate MBL levels commonly found in human populations might be the result of balancing selection. Using model infection systems with pseudotyped and authentic glycosylated viruses, we demonstrated that MBL indeed enhances infection of Ebola, Hendra, Nipah and West Nile viruses in low complement conditions. Mechanistic studies with Ebola virus (EBOV) glycoprotein pseudotyped lentiviruses confirmed that MBL binds to N-linked glycan epitopes on viral surfaces in a specific manner via the MBL carbohydrate recognition domain, which is necessary for enhanced infection. MBL mediates lipid-raft-dependent macropinocytosis of EBOV via a pathway that appears to require less actin or early endosomal processing compared with the filovirus canonical endocytic pathway. Using a validated RNA interference screen, we identified C1QBP (gC1qR) as a candidate surface receptor that mediates MBL-dependent enhancement of EBOV infection. We also identified dectin-2 (CLEC6A) as a potentially novel candidate attachment factor for EBOV. Our findings support the concept of an innate immune haplotype that represents critical interactions between MBL and complement component C4 genes and that may modify susceptibility or resistance to certain glycosylated pathogens. Therefore, higher levels of native or exogenous MBL could be deleterious in the setting of relative hypocomplementemia which can occur genetically or because of immunodepletion during active infections. Our findings confirm our hypothesis that the pressure of infectious diseases may have contributed in part to evolutionary selection of MBL mutant haplotypes
Biology of human hair: Know your hair to control it
Hair can be engineered at different levels—its structure and surface—through modification of its constituent molecules, in particular proteins, but also the hair follicle (HF) can be genetically altered, in particular with the advent of siRNA-based applications. General aspects of hair biology are reviewed, as well as the most recent contributions to understanding hair pigmentation and the regulation of hair development. Focus will also be placed on the techniques developed specifically for delivering compounds of varying chemical nature to the HF, indicating methods for genetic/biochemical modulation of HF components for the treatment of hair diseases. Finally, hair fiber structure and chemical characteristics will be discussed as targets for keratin surface functionalization
Antimicrobial resistance (AMR) nanomachines: mechanisms for fluoroquinolone and glycopeptide recognition, efflux and/or deactivation
In this review, we discuss mechanisms of resistance identified in bacterial agents Staphylococcus aureus and the enterococci towards two priority classes of antibiotics—the fluoroquinolones and the glycopeptides. Members of both classes interact with a number of components in the cells of these bacteria, so the cellular targets are also considered. Fluoroquinolone resistance mechanisms include efflux pumps (MepA, NorA, NorB, NorC, MdeA, LmrS or SdrM in S. aureus and EfmA or EfrAB in the enterococci) for removal of fluoroquinolone from the intracellular environment of bacterial cells and/or protection of the gyrase and topoisomerase IV target sites in Enterococcus faecalis by Qnr-like proteins. Expression of efflux systems is regulated by GntR-like (S. aureus NorG), MarR-like (MgrA, MepR) regulators or a two-component signal transduction system (TCS) (S. aureus ArlSR). Resistance to the glycopeptide antibiotic teicoplanin occurs via efflux regulated by the TcaR regulator in S. aureus. Resistance to vancomycin occurs through modification of the D-Ala-D-Ala target in the cell wall peptidoglycan and removal of high affinity precursors, or by target protection via cell wall thickening. Of the six Van resistance types (VanA-E, VanG), the VanA resistance type is considered in this review, including its regulation by the VanSR TCS. We describe the recent application of biophysical approaches such as the hydrodynamic technique of analytical ultracentrifugation and circular dichroism spectroscopy to identify the possible molecular effector of the VanS receptor that activates expression of the Van resistance genes; both approaches demonstrated that vancomycin interacts with VanS, suggesting that vancomycin itself (or vancomycin with an accessory factor) may be an effector of vancomycin resistance. With 16 and 19 proteins or protein complexes involved in fluoroquinolone and glycopeptide resistances, respectively, and the complexities of bacterial sensing mechanisms that trigger and regulate a wide variety of possible resistance mechanisms, we propose that these antimicrobial resistance mechanisms might be considered complex ‘nanomachines’ that drive survival of bacterial cells in antibiotic environments
Genetic loci associated with chronic obstructive pulmonary disease overlap with loci for lung function and pulmonary fibrosis.
Chronic obstructive pulmonary disease (COPD) is a leading cause of mortality worldwide. We performed a genetic association study in 15,256 cases and 47,936 controls, with replication of select top results (P < 5 × 10(-6)) in 9,498 cases and 9,748 controls. In the combined meta-analysis, we identified 22 loci associated at genome-wide significance, including 13 new associations with COPD. Nine of these 13 loci have been associated with lung function in general population samples, while 4 (EEFSEC, DSP, MTCL1, and SFTPD) are new. We noted two loci shared with pulmonary fibrosis (FAM13A and DSP) but that had opposite risk alleles for COPD. None of our loci overlapped with genome-wide associations for asthma, although one locus has been implicated in joint susceptibility to asthma and obesity. We also identified genetic correlation between COPD and asthma. Our findings highlight new loci associated with COPD, demonstrate the importance of specific loci associated with lung function to COPD, and identify potential regions of genetic overlap between COPD and other respiratory diseases
Neighborhood deprivation and biomarkers of health in Britain: The mediating role of the physical environment
Background: Neighborhood deprivation has been consistently linked to poor individual health outcomes; however, studies exploring the mechanisms involved in this association are scarce. The objective of this study was to investigate whether objective measures of the physical environment mediate the association between neighborhood socioeconomic deprivation and biomarkers of health in Britain. Methods: We linked individual-level biomarker data from Understanding Society: The UK Household Longitudinal Survey (2010-2012) to neighborhood-level data from different governmental sources. Our outcome variables were forced expiratory volume in 1 s (FEV1%; n=16,347), systolic blood pressure (SBP; n=16,846), body mass index (BMI; n=19,417), and levels of C-reactive protein (CRP; n=11,825). Our measure of neighborhood socioeconomic deprivation was the Carstairs index, and the neighborhood-level mediators were levels of air pollutants (sulphur dioxide [SO2], particulate matter [PM10], nitrogen dioxide [NO2], and carbon monoxide [CO]), green space, and proximity to waste and industrial facilities. We fitted a multilevel mediation model following a multilevel structural equation framework in MPlus v7.4, adjusting for age, gender, and income. Results: Residents of poor neighborhoods and those exposed to higher pollution and less green space had worse health outcomes. However, only SO2exposure significantly and partially mediated the association between neighborhood socioeconomic deprivation and SBP, BMI, and CRP. Conclusion: Reducing air pollution exposure and increasing access to green space may improve population health but may not decrease health inequalities in Britain
A study of the Z production cross-section in pp collisions at √s = 7 using tau final states
A measurement of the inclusive Z → ττ cross-section in pp collisions at
√s =7 is presented based on a dataset of 1.0 fb[superscript −1] collected by the LHCb detector. Candidates for Z → τ τ decays are identified through reconstructed final states with two muons, a muon and an electron, a muon and a hadron, or an electron and a hadron. The production cross-section for Z bosons, with invariant mass between 60 and 120 GeV/c[superscript 2], which decay to τ leptons with transverse momenta greater than 20 GeV/c and pseudorapidities between 2.0 and 4.5, is measured to be σ[subscript pp]→Z→ττ = 71.4 ± 3.5 ± 2.8 ± 2.5 pb; the first uncertainty is statistical, the second is systematic, and the third is due to the uncertainty on the integrated luminosity. The ratio of the cross-sections for Z → τ τ to Z → μμ is determined to be 0.93 ± 0.09, where the uncertainty is the combination of statistical, systematic, and luminosity uncertainties of the two measurements.National Science Foundation (U.S.
- …
