9,135 research outputs found
Fast computation of radar cross-section by fast multipole method in conjunction with lifting wavelet-like transform
The fast multipole method (FMM) in conjunction with the lifting wavelet-like transform scheme is proposed for the scattering analysis of differently shaped three-dimensional perfectly electrical conducting objects. As a flexible and efficient matrix compression technique, the proposed method can sparsify the aggregation matrix and disaggregation matrix in real time with compression ratio about 30%. The computational complexity and choice of proper wavelet are also discussed. Numerical simulation and complexity analysis have shown that the proposed method can speed up the aggregation and disaggregation steps of the FMM with lower memory requirements. © 2010 The Institution of Engineering and Technology.postprin
Adaptive frequency sweep analysis for electromagnetic problems using the Thiele interpolating continued fractions
A direct rational approximation method based on Thiele interpolating continued fractions theory is proposed for fast frequency sweep analysis of electromagnetic problems. And an adaptive algorithm is also formed. Compared with the conventional rational approximation method, the proposed method can get a rational approximation directly without a great number of matrix inverse computations and doesn't need to allocate much memory for high derivatives of the dense impedance matrix. Meanwhile, the computation of surface currents by continued fractions can be sped up as compared with the traditional rational approximation. Numerical simulations for broad band scattering analysis of different shaped objects are discussed to shown the effectiveness of the present method. © 2010 IEEE.published_or_final_versionThe 2nd International Conference on Education Technology and Computer (ICETC 2010), Shanghai, China, 22-24 June 2010. In Proceedings of 2nd ICETC, 2010, v. 5, p. 126-12
Anomalous material-dependent transport of focused, laser-driven proton beams.
Intense lasers can accelerate protons in sufficient numbers and energy that the resulting beam can heat materials to exotic warm (10 s of eV temperature) states. Here we show with experimental data that a laser-driven proton beam focused onto a target heated it in a localized spot with size strongly dependent upon material and as small as 35 μm radius. Simulations indicate that cold stopping power values cannot model the intense proton beam transport in solid targets well enough to match the large differences observed. In the experiment a 74 J, 670 fs laser drove a focusing proton beam that transported through different thicknesses of solid Mylar, Al, Cu or Au, eventually heating a rear, thin, Au witness layer. The XUV emission seen from the rear of the Au indicated a clear dependence of proton beam transport upon atomic number, Z, of the transport layer: a larger and brighter emission spot was measured after proton transport through the lower Z foils even with equal mass density for supposed equivalent proton stopping range. Beam transport dynamics pertaining to the observed heated spot were investigated numerically with a particle-in-cell (PIC) code. In simulations protons moving through an Al transport layer result in higher Au temperature responsible for higher Au radiant emittance compared to a Cu transport case. The inferred finding that proton stopping varies with temperature in different materials, considerably changing the beam heating profile, can guide applications seeking to controllably heat targets with intense proton beams
An improved observable for the forward-backward asymmetry in B -> K* l+ l- and Bs -> phi l+ l-
We study the decay B -> K* l+ l- in the QCD factorization approach and
propose a new integrated observable whose dependence on the form factors is
almost negligible, consequently the non--perturbative error is significantly
reduced and indeed its overall theoretical error is dominated by perturbative
scale uncertainties. The new observable we propose is the ratio between the
integrated forward--backward asymmetry in the [4,6] GeV^2 and [1,4] GeV^2
dilepton invariant mass bins. This new observable is particularly interesting
because, when compared to the location of the zero of the FBA spectrum, it is
experimentally easier to measure and its theoretical uncertainties are almost
as small; moreover it displays a very strong dependence on the phase of the
Wilson coefficient C_10 that is otherwise only accessible through complicated
CP violating asymmetries. We illustrate the new physics sensitivity of this
observable within the context of few extensions of the Standard Model, namely
the SM with four generations, an MSSM with non--vanishing source of flavor
changing neutral currents in the down squark sector and a Z' model with tree
level flavor changing couplings.Comment: 19 pages, 7 figure
Epigenetics as a mechanism driving polygenic clinical drug resistance
Aberrant methylation of CpG islands located at or near gene promoters is associated with inactivation of gene expression during tumour development. It is increasingly recognised that such epimutations may occur at a much higher frequency than gene mutation and therefore have a greater impact on selection of subpopulations of cells during tumour progression or acquisition of resistance to anticancer drugs. Although laboratory-based models of acquired resistance to anticancer agents tend to focus on specific genes or biochemical pathways, such 'one gene : one outcome' models may be an oversimplification of acquired resistance to treatment of cancer patients. Instead, clinical drug resistance may be due to changes in expression of a large number of genes that have a cumulative impact on chemosensitivity. Aberrant CpG island methylation of multiple genes occurring in a nonrandom manner during tumour development and during the acquisition of drug resistance provides a mechanism whereby expression of multiple genes could be affected simultaneously resulting in polygenic clinical drug resistance. If simultaneous epigenetic regulation of multiple genes is indeed a major driving force behind acquired resistance of patients' tumour to anticancer agents, this has important implications for biomarker studies of clinical outcome following chemotherapy and for clinical approaches designed to circumvent or modulate drug resistance
The hind- and midfoot alignment analyzed after a medializing calcaneal osteotomy using a 3D weight bearing CT
On the selection and design of proteins and peptide derivatives for the production of photoluminescent, red-emitting gold quantum clusters
Novel pathways of the synthesis of photoluminescent gold quantum clusters (AuQCs) using biomolecules as reactants provide biocompatible products for biological imaging techniques. In order to rationalize the rules for the preparation of red-emitting AuQCs in aqueous phase using proteins or peptides, the role of different organic structural units was investigated. Three systems were studied: proteins, peptides, and amino acid mixtures, respectively. We have found that cysteine and tyrosine are indispensable residues. The SH/S-S ratio in a single molecule is not a critical factor in the synthesis, but on the other hand, the stoichiometry of cysteine residues and the gold precursor is crucial. These observations indicate the importance of proper chemical behavior of all species in a wide size range extending from the atomic distances (in the AuI-S semi ring) to nanometer distances covering the larger sizes of proteins assuring the hierarchical structure of the whole self-assembled system
A note on "symmetric" vielbeins in bimetric, massive, perturbative and non perturbative gravities
We consider a manifold endowed with two different vielbeins
and corresponding to two different metrics and
. Such a situation arises generically in bimetric or massive
gravity (including the recently discussed version of de Rham, Gabadadze and
Tolley), as well as in perturbative quantum gravity where one vielbein
parametrizes the background space-time and the other the dynamical degrees of
freedom. We determine the conditions under which the relation can be
imposed (or the "Deser-van Nieuwenhuizen" gauge chosen). We clarify and correct
various statements which have been made about this issue.Comment: 20 pages. Section 7, prop. 6 and 7. added. Some results made more
precis
Experimental demonstration of a hyper-entangled ten-qubit Schr\"odinger cat state
Coherent manipulation of an increasing number of qubits for the generation of
entangled states has been an important goal and benchmark in the emerging field
of quantum information science. The multiparticle entangled states serve as
physical resources for measurement-based quantum computing and high-precision
quantum metrology. However, their experimental preparation has proved extremely
challenging. To date, entangled states up to six, eight atoms, or six photonic
qubits have been demonstrated. Here, by exploiting both the photons'
polarization and momentum degrees of freedom, we report the creation of
hyper-entangled six-, eight-, and ten-qubit Schr\"odinger cat states. We
characterize the cat states by evaluating their fidelities and detecting the
presence of genuine multi-partite entanglement. Small modifications of the
experimental setup will allow the generation of various graph states up to ten
qubits. Our method provides a shortcut to expand the effective Hilbert space,
opening up interesting applications such as quantum-enhanced super-resolving
phase measurement, graph-state generation for anyonic simulation and
topological error correction, and novel tests of nonlocality with
hyper-entanglement.Comment: 11 pages, 5 figures, comments welcom
Effect of Biodiversity Changes in Disease Risk: Exploring Disease Emergence in a Plant-Virus System
The effect of biodiversity on the ability of parasites to infect their host and cause disease (i.e. disease risk) is a major question in pathology, which is central to understand the emergence of infectious diseases, and to develop strategies for their management. Two hypotheses, which can be considered as extremes of a continuum, relate biodiversity to disease risk: One states that biodiversity is positively correlated with disease risk (Amplification Effect), and the second predicts a negative correlation between biodiversity and disease risk (Dilution Effect). Which of them applies better to different host-parasite systems is still a source of debate, due to limited experimental or empirical data. This is especially the case for viral diseases of plants. To address this subject, we have monitored for three years the prevalence of several viruses, and virus-associated symptoms, in populations of wild pepper (chiltepin) under different levels of human management. For each population, we also measured the habitat species diversity, host plant genetic diversity and host plant density. Results indicate that disease and infection risk increased with the level of human management, which was associated with decreased species diversity and host genetic diversity, and with increased host plant density. Importantly, species diversity of the habitat was the primary predictor of disease risk for wild chiltepin populations. This changed in managed populations where host genetic diversity was the primary predictor. Host density was generally a poorer predictor of disease and infection risk. These results support the dilution effect hypothesis, and underline the relevance of different ecological factors in determining disease/infection risk in host plant populations under different levels of anthropic influence. These results are relevant for managing plant diseases and for establishing conservation policies for endangered plant species
- …
