763 research outputs found

    Star Architecture as Socio-Material Assemblage

    Get PDF
    Taking inspiration from new materialism and assemblage, the chapter deals with star architects and iconic buildings as socio-material network effects that do not pre-exist action, but are enacted in practice, in the materiality of design crafting and city building. Star architects are here conceptualized as part of broader assemblages of actors and practices ‘making star architecture’ a reality, and the buildings they design are considered not just as unique and iconic objects, but dis-articulated as complex crafts mobilizing skills, technologies, materials, and forms of knowledge not necessarily ascribable to architecture. Overcoming narrow criticism focusing on the symbolic order of icons as unique creations and alienated repetitions of capitalist development, the chapter’s main aim is to widen the scope of critique by bridging culture and economy, symbolism and practicality, making star architecture available to a broad, fragmented arena of (potential) critics, unevenly equipped with critical tools and differentiated experiences

    Application of the speed-duration relationship to normalize the intensity of high-intensity interval training

    Get PDF
    The tolerable duration of continuous high-intensity exercise is determined by the hyperbolic Speed-tolerable duration (S-tLIM) relationship. However, application of the S-tLIM relationship to normalize the intensity of High-Intensity Interval Training (HIIT) has yet to be considered, with this the aim of present study. Subjects completed a ramp-incremental test, and series of 4 constant-speed tests to determine the S-tLIM relationship. A sub-group of subjects (n = 8) then repeated 4 min bouts of exercise at the speeds predicted to induce intolerance at 4 min (WR4), 6 min (WR6) and 8 min (WR8), interspersed with bouts of 4 min recovery, to the point of exercise intolerance (fixed WR HIIT) on different days, with the aim of establishing the work rate that could be sustained for 960 s (i.e. 4×4 min). A sub-group of subjects (n = 6) also completed 4 bouts of exercise interspersed with 4 min recovery, with each bout continued to the point of exercise intolerance (maximal HIIT) to determine the appropriate protocol for maximizing the amount of high-intensity work that can be completed during 4×4 min HIIT. For fixed WR HIIT tLIM of HIIT sessions was 399±81 s for WR4, 892±181 s for WR6 and 1517±346 s for WR8, with total exercise durations all significantly different from each other (P<0.050). For maximal HIIT, there was no difference in tLIM of each of the 4 bouts (Bout 1: 229±27 s; Bout 2: 262±37 s; Bout 3: 235±49 s; Bout 4: 235±53 s; P>0.050). However, there was significantly less high-intensity work completed during bouts 2 (153.5±40. 9 m), 3 (136.9±38.9 m), and 4 (136.7±39.3 m), compared with bout 1 (264.9±58.7 m; P>0.050). These data establish that WR6 provides the appropriate work rate to normalize the intensity of HIIT between subjects. Maximal HIIT provides a protocol which allows the relative contribution of the work rate profile to physiological adaptations to be considered during alternative intensity-matched HIIT protocols

    Team-taught versus individually taught undergraduate education: A qualitative study of student experiences and preferences

    Get PDF
    Team teaching is becoming more common in undergraduate programmes of study although the relative merits to the more traditional individually taught courses have not been determined for best practice. For this study, 15 final year undergraduate students were interviewed to gain insight into their learning experiences. A thematic analysis of the interview data identified the perceived advantages and disadvantages of each mode of teaching. The advantages of individually taught courses included: Consistency of content delivery and advice, Familiarity with the lecturer’s teaching style and better Continuity of the subject content. The disadvantage of individually taught modules included Missing knowledge, compared to a team approach. Advantages of team taught modules included: Greater insight into a topic delivered by multiple team members. Disadvantages included: Content overlap, Conflicting messages relating to assessment, team members not taking Ownership of their roles and responsibilities and a belief that overall Team failure is worse than individual failure to deliver a module well. The results revealed that individually taught modules were generally preferred to team taught modules. A set of best practice recommendations are proposed to address the challenges when delivering team-taught teaching and become more student focused

    Performance of the CMS Cathode Strip Chambers with Cosmic Rays

    Get PDF
    The Cathode Strip Chambers (CSCs) constitute the primary muon tracking device in the CMS endcaps. Their performance has been evaluated using data taken during a cosmic ray run in fall 2008. Measured noise levels are low, with the number of noisy channels well below 1%. Coordinate resolution was measured for all types of chambers, and fall in the range 47 microns to 243 microns. The efficiencies for local charged track triggers, for hit and for segments reconstruction were measured, and are above 99%. The timing resolution per layer is approximately 5 ns

    Integrating organizational, social, and individual perspectives in Web 2.0-based workplace e-learning

    Get PDF
    From the issue entitled 'Special Issue: Emerging Social and Legal Aspect'E-learning is emerging as a popular approach of education in the workplace by virtue of its flexibility to access, just-in-time delivery, and cost-effectiveness. To improve social interaction and knowledge sharing in e-learning, Web 2.0 is increasingly utilized and integrated with e-learning applications. However, existing social learning systems fail to align learning with organizational goals and individual needs in a systemic way. The dominance of technology-oriented approaches makes elearning applications less goal-effective and poor in quality and design. To solve the problem, we address the requirement of integrating organizational, social, and individual perspectives in the development of Web 2.0 elearning systems. To fulfill the requirement, a key performance indicator (KPI)-oriented approach is presented in this study. By integrating a KPI model with Web 2.0 technologies, our approach is able to: 1) set up organizational goals and link the goals with expertise required for individuals; 2) build a knowledge network by linking learning resources to a set of competences to be developed and a group of people who learn and contribute to the knowledge network through knowledge creation, sharing, and peer evaluation; and 3) improve social networking and knowledge sharing by identifying each individual's work context, expertise, learning need, performance, and contribution. The mechanism of the approach is explored and elaborated with conceptual frameworks and implementation technologies. A prototype system for Web 2.0 e-learning has been developed to demonstrate the effectiveness of the approach. © Springer Science + Business Media, LLC 2009.postprin

    Rituximab in B-Cell Hematologic Malignancies: A Review of 20 Years of Clinical Experience

    Get PDF
    Rituximab is a human/murine, chimeric anti-CD20 monoclonal antibody with established efficacy, and a favorable and well-defined safety profile in patients with various CD20-expressing lymphoid malignancies, including indolent and aggressive forms of B-cell non-Hodgkin lymphoma. Since its first approval 20 years ago, intravenously administered rituximab has revolutionized the treatment of B-cell malignancies and has become a standard component of care for follicular lymphoma, diffuse large B-cell lymphoma, chronic lymphocytic leukemia, and mantle cell lymphoma. For all of these diseases, clinical trials have demonstrated that rituximab not only prolongs the time to disease progression but also extends overall survival. Efficacy benefits have also been shown in patients with marginal zone lymphoma and in more aggressive diseases such as Burkitt lymphoma. Although the proven clinical efficacy and success of rituximab has led to the development of other anti-CD20 monoclonal antibodies in recent years (e.g., obinutuzumab, ofatumumab, veltuzumab, and ocrelizumab), rituximab is likely to maintain a position within the therapeutic armamentarium because it is well established with a long history of successful clinical use. Furthermore, a subcutaneous formulation of the drug has been approved both in the EU and in the USA for the treatment of B-cell malignancies. Using the wealth of data published on rituximab during the last two decades, we review the preclinical development of rituximab and the clinical experience gained in the treatment of hematologic B-cell malignancies, with a focus on the well-established intravenous route of administration. This article is a companion paper to A. Davies, et al., which is also published in this issue

    Performance of CMS muon reconstruction in pp collision events at sqrt(s) = 7 TeV

    Get PDF
    The performance of muon reconstruction, identification, and triggering in CMS has been studied using 40 inverse picobarns of data collected in pp collisions at sqrt(s) = 7 TeV at the LHC in 2010. A few benchmark sets of selection criteria covering a wide range of physics analysis needs have been examined. For all considered selections, the efficiency to reconstruct and identify a muon with a transverse momentum pT larger than a few GeV is above 95% over the whole region of pseudorapidity covered by the CMS muon system, abs(eta) < 2.4, while the probability to misidentify a hadron as a muon is well below 1%. The efficiency to trigger on single muons with pT above a few GeV is higher than 90% over the full eta range, and typically substantially better. The overall momentum scale is measured to a precision of 0.2% with muons from Z decays. The transverse momentum resolution varies from 1% to 6% depending on pseudorapidity for muons with pT below 100 GeV and, using cosmic rays, it is shown to be better than 10% in the central region up to pT = 1 TeV. Observed distributions of all quantities are well reproduced by the Monte Carlo simulation.Comment: Replaced with published version. Added journal reference and DO

    Performance of CMS muon reconstruction in pp collision events at sqrt(s) = 7 TeV

    Get PDF
    The performance of muon reconstruction, identification, and triggering in CMS has been studied using 40 inverse picobarns of data collected in pp collisions at sqrt(s) = 7 TeV at the LHC in 2010. A few benchmark sets of selection criteria covering a wide range of physics analysis needs have been examined. For all considered selections, the efficiency to reconstruct and identify a muon with a transverse momentum pT larger than a few GeV is above 95% over the whole region of pseudorapidity covered by the CMS muon system, abs(eta) < 2.4, while the probability to misidentify a hadron as a muon is well below 1%. The efficiency to trigger on single muons with pT above a few GeV is higher than 90% over the full eta range, and typically substantially better. The overall momentum scale is measured to a precision of 0.2% with muons from Z decays. The transverse momentum resolution varies from 1% to 6% depending on pseudorapidity for muons with pT below 100 GeV and, using cosmic rays, it is shown to be better than 10% in the central region up to pT = 1 TeV. Observed distributions of all quantities are well reproduced by the Monte Carlo simulation.Comment: Replaced with published version. Added journal reference and DO

    Multidimentional proteomics for cell biology

    Get PDF
    The proteome is a dynamic system in which each protein has interconnected properties — dimensions — that together contribute to the phenotype of a cell. Measuring these properties has proved challenging owing to their diversity and dynamic nature. Advances in mass spectrometry-based proteomics now enable the measurement of multiple properties for thousands of proteins, including their abundance, isoform expression, turnover rate, subcellular localization, post-translational modifications and interactions. Complementing these experimental developments are new data analysis, integration and visualization tools as well as data-sharing resources. Together, these advances in the multidimensional analysis of the proteome are transforming our understanding of various cellular and physiological processes
    corecore