191 research outputs found
Relação entre nível geral de saúde, dor musculoesquelética e síndrome de burnout em professores universitários
O objetivo desse estudo foi verificar a relação entre nível de saúde geral, dor musculoesquelética, frequência de sintomas musculoesqueléticos e a síndrome de burnout em professores universitários. Foram avaliados 50 professores de uma universidade privada. O nível de saúde geral foi verificado pela versão em português da Personal Health Scale (PHS-Pt), a dor musculoesquelética pelo Questionário Nórdico de Sintomas Osteomusculares (QNSO) e a presença da síndrome de burnout pelo questionário Maslach Burnout Inventory - Human Services Survey (MBI-HSS). A maioria dos professores apresentou comprometimento do nível de saúde (escore total PHS-Pt=6,7±3,8), sendo que 70% apresentaram dor no pescoço e 64% na região lombar nos últimos 12 meses. Houve correlação positiva entre nível geral de saúde e a dimensão exaustão emocional do inventário de burnout. Porém, não houve correlação entre as dimensões do MBI-HSS e dor musculoesquelética.The aim of this study was to verify the relationship between general level of health, muskuloeskeletal pain and occurrence of burnout syndrome in college teachers. Fifty teachers from a private university were evaluated. The level of general health was evaluated by the Portuguese version of the Personal Health Scale (PHS-Pt), muskuloeskeletal pain was verified by Nordic Muskuloeskeletal Questionnaire (NMQ) and the occurrence of burnout syndrome was evaluated by the Portuguese version of the Maslach Burnout Inventory - Human Services Survey (MBI-HSS). The majority of the sample presented some compromising of general health level (total score PHS-Pt=6.7±3.8) with 70% presenting neck pain and 64% presenting lower back pain in the last year. Positive correlation occurred between burnout exhaustion dimension and level of general health. There were no correlation between MBI-HSS dimensions and muskuloeskeletal pain occurrence in the last year
Differential impact of chronic stress along the hippocampal dorsal–ventral axis
First published online 06 February 2014Stress impacts differently in distinct brain regions. However, so far few studies have focused on the differential responses triggered by stressful stimuli on the intrinsic functional heterogeneity of the hippocampal axis. In this study, we assessed the functional and structural alterations caused by exposure to a chronic unpredictable stress (CUS) paradigm on the dorsal-ventral axis of the hippocampus. The morphological analysis demonstrated that CUS had opposite outcomes in the structure of the dorsal (DH) and ventral hippocampus (VH): whereas in the DH, stress triggered a volumetric reduction as a result of atrophy of CA3 and CA1 apical dendrites, in the VH there was an increase in hippocampal volume concurrent with the increase of CA3 apical dendrites. In parallel, electrophysiological data revealed that stress led to a decrease in VH LTD. In summary, the present work showed that stress impacts differently on the structure and function of the DH and VH which contributes to better understand the overall spectrum of the central effects of stress.Pinto V and Mota C were supported by Fundacao para a Ciencia e Tecnologia (FCT) grants (SFRH/BPD/69132/2010; SFRH/BD/81881/2011, respectively). This work was supported by an FCT grant (PTDC/SAU-NSC/120590/2010). The authors declare no competing financial interests
Resolving the neural circuits of anxiety
Although anxiety disorders represent a major societal problem demanding new therapeutic targets, these efforts have languished in the absence of a mechanistic understanding of this subjective emotional state. While it is impossible to know with certainty the subjective experience of a rodent, rodent models hold promise in dissecting well-conserved limbic circuits. The application of modern approaches in neuroscience has already begun to unmask the neural circuit intricacies underlying anxiety by allowing direct examination of hypotheses drawn from existing psychological concepts. This information points toward an updated conceptual model for what neural circuit perturbations could give rise to pathological anxiety and thereby provides a roadmap for future therapeutic development.National Institute of Diabetes and Digestive and Kidney Diseases (U.S.) (NIH Director’s New Innovator Award DP2-DK-102256-01)National Institute of Mental Health (U.S.) (NIH) R01-MH102441-01)JPB Foundatio
A922 Sequential measurement of 1 hour creatinine clearance (1-CRCL) in critically ill patients at risk of acute kidney injury (AKI)
Meeting abstrac
Cord Serum Concentrations of Perfluorooctane Sulfonate (PFOS) and Perfluorooctanoate (PFOA) in Relation to Weight and Size at Birth
Expression of HA of HPAI H5N1 Virus at US2 Gene Insertion Site of Turkey Herpesvirus Induced Better Protection than That at US10 Gene Insertion Site
Herpesvirus of turkey (HVT) is being widely used as a vector for development of recombinant vaccines and US2 and US10 genes are often chosen as insertion sites for targeted gene expression. However, the different effects of the two genes for generation of recombinant HVT vaccines were unknown. In order to compare the effects of inserted genes in the two sites on the efficacy of the recombinant vaccines, host-protective haemagglutinin (HA) gene of the highly pathogenic avian influenza virus (HPAIV) H5N1 was inserted into either US2 or US10 gene locus of the HVT. The resulting US2 (rHVT-US2-HA) or US10 (rHVT-US10-HA) recombinant HVT viruses were used to infect chicken embryo fibroblasts. Plaques and the growth kinetics of rHVT-US2-HA-infected chicken embryo fibroblasts were similar to those of parental HVT whereas rHVT-US10-HA infected chicken embryo fibroblasts had different growth kinetics and plaque formation. The viremia levels in rHVT-US10-HA virus-infected chickens were significantly lower than those of rHVT-US2-HA group on 28 days post infection. The vaccine efficacy of the two recombinant viruses against H5N1 HPAIV and virulent Marek's disease virus was also evaluated in 1-day-old vaccinated chickens. rHVT-US2-HA-vaccinated chickens were better protected with reduced mortality than rHVT-US10-HA-vaccinated animals following HPAIV challenge. Furthermore, the overall hemaglutination inhibition antibody titers of rHVT-US2-HA-vaccinated chickens were higher than those of rHVT-US10-HA-vaccinated chickens. Protection levels against Marek's disease virus challenge following vaccination with either rHVT-US2-HA or rHVT-US10-HA, however, were similar to those of the parental HVT virus. These results, for the first time, indicate that US2 gene provides a favorable foreign gene insertion site for generation of recombinant HVT vaccines
Dual Infection and Superinfection Inhibition of Epithelial Skin Cells by Two Alphaherpesviruses Co-Occur in the Natural Host
Hosts can be infected with multiple herpesviruses, known as superinfection; however, superinfection of cells is rare due to the phenomenon known as superinfection inhibition. It is believed that dual infection of cells occurs in nature, based on studies examining genetic exchange between homologous alphaherpesviruses in the host, but to date, this has not been directly shown in a natural model. In this report, gallid herpesvirus 2 (GaHV-2), better known as Marek’s disease virus (MDV), was used in its natural host, the chicken, to determine whether two homologous alphaherpesviruses can infect the same cells in vivo. MDV shares close similarities with the human alphaherpesvirus, varicella zoster virus (VZV), with respect to replication in the skin and exit from the host. Recombinant MDVs were generated that express either the enhanced GFP (eGFP) or monomeric RFP (mRFP) fused to the UL47 (VP13/14) herpesvirus tegument protein. These viruses exhibited no alteration in pathogenic potential and expressed abundant UL47-eGFP or -mRFP in feather follicle epithelial cells in vivo. Using laser scanning confocal microscopy, it was evident that these two similar, but distinguishable, viruses were able to replicate within the same cells of their natural host. Evidence of superinfection inhibition was also observed. These results have important implications for two reasons. First, these results show that during natural infection, both dual infection of cells and superinfection inhibition can co-occur at the cellular level. Secondly, vaccination against MDV with homologous alphaherpesvirus like attenuated GaHV-2, or non-oncogenic GaHV-3 or meleagrid herpesvirus (MeHV-1) has driven the virus to greater virulence and these results implicate the potential for genetic exchange between homologous avian alphaherpesviruses that could drive increased virulence. Because the live attenuated varicella vaccine is currently being administered to children, who in turn could be superinfected by wild-type VZV, this could potentiate recombination events of VZV as well
Herpesvirus Telomerase RNA (vTR) with a Mutated Template Sequence Abrogates Herpesvirus-Induced Lymphomagenesis
Telomerase reverse transcriptase (TERT) and telomerase RNA (TR) represent the enzymatically active components of telomerase. In the complex, TR provides the template for the addition of telomeric repeats to telomeres, a protective structure at the end of linear chromosomes. Human TR with a mutation in the template region has been previously shown to inhibit proliferation of cancer cells in vitro. In this report, we examined the effects of a mutation in the template of a virus encoded TR (vTR) on herpesvirus-induced tumorigenesis in vivo. For this purpose, we used the oncogenic avian herpesvirus Marek's disease virus (MDV) as a natural virus-host model for lymphomagenesis. We generated recombinant MDV in which the vTR template sequence was mutated from AATCCCAATC to ATATATATAT (vAU5) by two-step Red-mediated mutagenesis. Recombinant viruses harboring the template mutation replicated with kinetics comparable to parental and revertant viruses in vitro. However, mutation of the vTR template sequence completely abrogated virus-induced tumor formation in vivo, although the virus was able to undergo low-level lytic replication. To confirm that the absence of tumors was dependent on the presence of mutant vTR in the telomerase complex, a second mutation was introduced in vAU5 that targeted the P6.1 stem loop, a conserved region essential for vTR-TERT interaction. Absence of vTR-AU5 from the telomerase complex restored virus-induced lymphoma formation. To test if the attenuated vAU5 could be used as an effective vaccine against MDV, we performed vaccination-challenge studies and determined that vaccination with vAU5 completely protected chickens from lethal challenge with highly virulent MDV. Taken together, our results demonstrate 1) that mutation of the vTR template sequence can completely abrogate virus-induced tumorigenesis, likely by the inhibition of cancer cell proliferation, and 2) that this strategy could be used to generate novel vaccine candidates against virus-induced lymphoma
Predation of migratory Little Stint (Calidris minuta) by Barbary Falcon (Falco pelegrinoides) is dependent on body mass and duration of stopover time
Genetic Structure of the Polymorphic Metrosideros (Myrtaceae) Complex in the Hawaiian Islands Using Nuclear Microsatellite Data
Five species of Metrosideros (Myrtaceae) are recognized in the Hawaiian Islands, including the widespread M. polymorpha, and are characterized by a multitude of distinctive, yet overlapping, habit, ecological, and morphological forms. It remains unclear, despite several previous studies, whether the morphological variation within Hawaiian Metrosideros is due to hybridization, genetic polymorphism, phenotypic plasticity, or some combination of these processes. The Hawaiian Metrosideros complex has become a model system to study ecology and evolution; however this is the first study to use microsatellite data for addressing inter-island patterns of variation from across the Hawaiian Islands.Ten nuclear microsatellite loci were genotyped from 143 individuals of Metrosideros. We took advantage of the bi-parental inheritance and rapid mutation rate of these data to examine the validity of the current taxonomy and to investigate whether Metrosideros plants from the same island are more genetically similar than plants that are morphologically similar. The Bayesian algorithm of the program structure was used to define genetic groups within Hawaiian Metrosideros and the closely related taxon M. collina from the Marquesas and Austral Islands. Several standard and nested AMOVAs were conducted to test whether the genetic diversity is structured geographically or taxonomically.The results suggest that Hawaiian Metrosideros have dynamic gene flow, with genetic and morphological diversity structured not simply by geography or taxonomy, but as a result of parallel evolution on islands following rampant island-island dispersal, in addition to ancient chloroplast capture. Results also suggest that the current taxonomy requires major revisions in order to reflect the genetic structure revealed in the microsatellite data
- …
