42,166 research outputs found

    Phonon arithmetic in a trapped ion system

    Get PDF
    Single-quantum level operations are important tools to manipulate a quantum state. Annihilation or creation of single particles translates a quantum state to another by adding or subtracting a particle, depending on how many are already in the given state. The operations are probabilistic and the success rate has yet been low in their experimental realization. Here we experimentally demonstrate (near) deterministic addition and subtraction of a bosonic particle, in particular a phonon of ionic motion in a harmonic potential. We realize the operations by coupling phonons to an auxiliary two-level system and applying transitionless adiabatic passage. We show handy repetition of the operations on various initial states and demonstrate by the reconstruction of the density matrices that the operations preserve coherences. We observe the transformation of a classical state to a highly non-classical one and a Gaussian state to a non-Gaussian one by applying a sequence of operations deterministically

    Optimal energy efficiency link adaptation in IEEE 802.15.6 IR-UWB body area networks

    Full text link
    © 2014 IEEE. We propose a novel link adaptation mechanism to maximize energy efficiency in IEEE 802.15.6 impulse radio ultra wideband (IR-UWB) wireless body area networks (WBANs). We consider noncoherent energy detection and autocorrelation receivers, suitable for low complexity implementations. The amount of captured energy is first modeled for the on-body WBAN channel. Using our energy capture model and Gaussian approximations for the decision statistic, the error performance of various physical layer modes of the IEEE 802.15.6 standard is derived assuming intra-symbol interference. We refer to the IEEE 802.15.6 specification as a use case. The proposed adaptation scheme can be applied to any other IR-UWB system with noncoherent receivers and is based on the estimated signal to noise ratio and the channel's energy capture index for which we propose unbiased estimators

    Inferring Population Preferences via Mixtures of Spatial Voting Models

    Full text link
    Understanding political phenomena requires measuring the political preferences of society. We introduce a model based on mixtures of spatial voting models that infers the underlying distribution of political preferences of voters with only voting records of the population and political positions of candidates in an election. Beyond offering a cost-effective alternative to surveys, this method projects the political preferences of voters and candidates into a shared latent preference space. This projection allows us to directly compare the preferences of the two groups, which is desirable for political science but difficult with traditional survey methods. After validating the aggregated-level inferences of this model against results of related work and on simple prediction tasks, we apply the model to better understand the phenomenon of political polarization in the Texas, New York, and Ohio electorates. Taken at face value, inferences drawn from our model indicate that the electorates in these states may be less bimodal than the distribution of candidates, but that the electorates are comparatively more extreme in their variance. We conclude with a discussion of limitations of our method and potential future directions for research.Comment: To be published in the 8th International Conference on Social Informatics (SocInfo) 201

    Enumeration of distinct mechanically stable disk packings in small systems

    Full text link
    We create mechanically stable (MS) packings of bidisperse disks using an algorithm in which we successively grow or shrink soft repulsive disks followed by energy minimization until the overlaps are vanishingly small. We focus on small systems because this enables us to enumerate nearly all distinct MS packings. We measure the probability to obtain a MS packing at packing fraction ϕ\phi and find several notable results. First, the probability is highly nonuniform. When averaged over narrow packing fraction intervals, the most probable MS packing occurs at the highest ϕ\phi and the probability decays exponentially with decreasing ϕ\phi. Even more striking, within each packing-fraction interval, the probability can vary by many orders of magnitude. By using two different packing-generation protocols, we show that these results are robust and the packing frequencies do not change qualitatively with different protocols.Comment: 4 pages, 3 figures, Conference Proceedings for X International Workshop on Disordered System

    Tag-Aware Recommender Systems: A State-of-the-art Survey

    Get PDF
    In the past decade, Social Tagging Systems have attracted increasing attention from both physical and computer science communities. Besides the underlying structure and dynamics of tagging systems, many efforts have been addressed to unify tagging information to reveal user behaviors and preferences, extract the latent semantic relations among items, make recommendations, and so on. Specifically, this article summarizes recent progress about tag-aware recommender systems, emphasizing on the contributions from three mainstream perspectives and approaches: network-based methods, tensor-based methods, and the topic-based methods. Finally, we outline some other tag-related works and future challenges of tag-aware recommendation algorithms.Comment: 19 pages, 3 figure

    Splicing-dependent NMD does not require the EJC in Schizosaccharomyces pombe

    Get PDF
    Nonsense-mediated mRNA decay (NMD) is a translation-linked process that destroys mRNAs with premature translation termination codons (PTCs). In mammalian cells, NMD is also linked to pre-mRNA splicing, usually PTCs trigger strong NMD only when positioned upstream of at least one intron. The exon junction complex (EJC) is believed to mediate the link between splicing and NMD in these systems. Here, we report that in Schizosaccharomyces pombe splicing also enhances NMD, but against the EJC model prediction, an intron stimulated NMD regardless of whether it is positioned upstream or downstream of the PTC and EJC components are not required. Still the effect of splicing seems to be direct—we have found that the important NMD determinant is the proximity of an intron to the PTC, not just the occurrence of splicing. On the basis of these results, we propose a new model to explain how splicing could affect NMD

    Energy-delay tradeoffs in impulse-based ultra-wideband body area networks with noncoherent receivers

    Full text link
    © 2014 IEEE. In this paper we address the problem of rate scheduling in the Impulse Radio (IR) ultra-wideband (UWB) wireless body area networks (WBANs) and the minimum energy required to stabilize the queuing system. Targeting low complexity WBAN applications, we assume noncoherent receivers based on energy detection and autocorrelation for all nodes. The coordinating node can minimize the average energy consumption of the system and achieve the queue backlog stability of the sensor nodes by controlling the number of pulses per symbol. We first illustrate the necessary and sufficient conditions of network stability for a multi-mode UWB system and then propose a feasible rate scheduling algorithm based on the Lyapunov optimization theory. The scheduling algorithm uses the instantaneous channel state information and the length of the local queue of all sensor nodes and can approach the optimal energy-delay tradeoff of the network. We apply our theoretical framework to the IR-UWB physical layer of the IEEE 802.15.6 standard and extract the optimal physical layer modes that can achieve the desired energy-delay tradeoff

    Dual-wavelength ultra-short pulse generation by use of semiconductor laser diode

    Get PDF
    2002-2003 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe
    corecore