42,166 research outputs found
Phonon arithmetic in a trapped ion system
Single-quantum level operations are important tools to manipulate a quantum state. Annihilation or creation of single particles translates a quantum state to another by adding or subtracting a particle, depending on how many are already in the given state. The operations are probabilistic and the success rate has yet been low in their experimental realization. Here we experimentally demonstrate (near) deterministic addition and subtraction of a bosonic particle, in particular a phonon of ionic motion in a harmonic potential. We realize the operations by coupling phonons to an auxiliary two-level system and applying transitionless adiabatic passage. We show handy repetition of the operations on various initial states and demonstrate by the reconstruction of the density matrices that the operations preserve coherences. We observe the transformation of a classical state to a highly non-classical one and a Gaussian state to a non-Gaussian one by applying a sequence of operations deterministically
Optimal energy efficiency link adaptation in IEEE 802.15.6 IR-UWB body area networks
© 2014 IEEE. We propose a novel link adaptation mechanism to maximize energy efficiency in IEEE 802.15.6 impulse radio ultra wideband (IR-UWB) wireless body area networks (WBANs). We consider noncoherent energy detection and autocorrelation receivers, suitable for low complexity implementations. The amount of captured energy is first modeled for the on-body WBAN channel. Using our energy capture model and Gaussian approximations for the decision statistic, the error performance of various physical layer modes of the IEEE 802.15.6 standard is derived assuming intra-symbol interference. We refer to the IEEE 802.15.6 specification as a use case. The proposed adaptation scheme can be applied to any other IR-UWB system with noncoherent receivers and is based on the estimated signal to noise ratio and the channel's energy capture index for which we propose unbiased estimators
Inferring Population Preferences via Mixtures of Spatial Voting Models
Understanding political phenomena requires measuring the political
preferences of society. We introduce a model based on mixtures of spatial
voting models that infers the underlying distribution of political preferences
of voters with only voting records of the population and political positions of
candidates in an election. Beyond offering a cost-effective alternative to
surveys, this method projects the political preferences of voters and
candidates into a shared latent preference space. This projection allows us to
directly compare the preferences of the two groups, which is desirable for
political science but difficult with traditional survey methods. After
validating the aggregated-level inferences of this model against results of
related work and on simple prediction tasks, we apply the model to better
understand the phenomenon of political polarization in the Texas, New York, and
Ohio electorates. Taken at face value, inferences drawn from our model indicate
that the electorates in these states may be less bimodal than the distribution
of candidates, but that the electorates are comparatively more extreme in their
variance. We conclude with a discussion of limitations of our method and
potential future directions for research.Comment: To be published in the 8th International Conference on Social
Informatics (SocInfo) 201
Enumeration of distinct mechanically stable disk packings in small systems
We create mechanically stable (MS) packings of bidisperse disks using an
algorithm in which we successively grow or shrink soft repulsive disks followed
by energy minimization until the overlaps are vanishingly small. We focus on
small systems because this enables us to enumerate nearly all distinct MS
packings. We measure the probability to obtain a MS packing at packing fraction
and find several notable results. First, the probability is highly
nonuniform. When averaged over narrow packing fraction intervals, the most
probable MS packing occurs at the highest and the probability decays
exponentially with decreasing . Even more striking, within each
packing-fraction interval, the probability can vary by many orders of
magnitude. By using two different packing-generation protocols, we show that
these results are robust and the packing frequencies do not change
qualitatively with different protocols.Comment: 4 pages, 3 figures, Conference Proceedings for X International
Workshop on Disordered System
Tag-Aware Recommender Systems: A State-of-the-art Survey
In the past decade, Social Tagging Systems have attracted increasing
attention from both physical and computer science communities. Besides the
underlying structure and dynamics of tagging systems, many efforts have been
addressed to unify tagging information to reveal user behaviors and
preferences, extract the latent semantic relations among items, make
recommendations, and so on. Specifically, this article summarizes recent
progress about tag-aware recommender systems, emphasizing on the contributions
from three mainstream perspectives and approaches: network-based methods,
tensor-based methods, and the topic-based methods. Finally, we outline some
other tag-related works and future challenges of tag-aware recommendation
algorithms.Comment: 19 pages, 3 figure
Splicing-dependent NMD does not require the EJC in Schizosaccharomyces pombe
Nonsense-mediated mRNA decay (NMD) is a translation-linked process that destroys mRNAs with premature translation termination codons (PTCs). In mammalian cells, NMD is also linked to pre-mRNA splicing, usually PTCs trigger strong NMD only when positioned upstream of at least one intron. The exon junction complex (EJC) is believed to mediate the link between splicing and NMD in these systems. Here, we report that in Schizosaccharomyces pombe splicing also enhances NMD, but against the EJC model prediction, an intron stimulated NMD regardless of whether it is positioned upstream or downstream of the PTC and EJC components are not required. Still the effect of splicing seems to be direct—we have found that the important NMD determinant is the proximity of an intron to the PTC, not just the occurrence of splicing. On the basis of these results, we propose a new model to explain how splicing could affect NMD
Energy-delay tradeoffs in impulse-based ultra-wideband body area networks with noncoherent receivers
© 2014 IEEE. In this paper we address the problem of rate scheduling in the Impulse Radio (IR) ultra-wideband (UWB) wireless body area networks (WBANs) and the minimum energy required to stabilize the queuing system. Targeting low complexity WBAN applications, we assume noncoherent receivers based on energy detection and autocorrelation for all nodes. The coordinating node can minimize the average energy consumption of the system and achieve the queue backlog stability of the sensor nodes by controlling the number of pulses per symbol. We first illustrate the necessary and sufficient conditions of network stability for a multi-mode UWB system and then propose a feasible rate scheduling algorithm based on the Lyapunov optimization theory. The scheduling algorithm uses the instantaneous channel state information and the length of the local queue of all sensor nodes and can approach the optimal energy-delay tradeoff of the network. We apply our theoretical framework to the IR-UWB physical layer of the IEEE 802.15.6 standard and extract the optimal physical layer modes that can achieve the desired energy-delay tradeoff
Dual-wavelength ultra-short pulse generation by use of semiconductor laser diode
2002-2003 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe
- …
