254 research outputs found
Association of MC1R Variants and host phenotypes with melanoma risk in CDKN2A mutation carriers: a GenoMEL study
<p><b>Background</b> Carrying the cyclin-dependent kinase inhibitor 2A (CDKN2A) germline mutations is associated with a high risk for melanoma. Penetrance of CDKN2A mutations is modified by pigmentation characteristics, nevus phenotypes, and some variants of the melanocortin-1 receptor gene (MC1R), which is known to have a role in the pigmentation process. However, investigation of the associations of both MC1R variants and host phenotypes with melanoma risk has been limited.</p>
<p><b>Methods</b> We included 815 CDKN2A mutation carriers (473 affected, and 342 unaffected, with melanoma) from 186 families from 15 centers in Europe, North America, and Australia who participated in the Melanoma Genetics Consortium. In this family-based study, we assessed the associations of the four most frequent MC1R variants (V60L, V92M, R151C, and R160W) and the number of variants (1, ≥2 variants), alone or jointly with the host phenotypes (hair color, propensity to sunburn, and number of nevi), with melanoma risk in CDKN2A mutation carriers. These associations were estimated and tested using generalized estimating equations. All statistical tests were two-sided.</p>
<p><b>Results</b> Carrying any one of the four most frequent MC1R variants (V60L, V92M, R151C, R160W) in CDKN2A mutation carriers was associated with a statistically significantly increased risk for melanoma across all continents (1.24 × 10−6 ≤ P ≤ .0007). A consistent pattern of increase in melanoma risk was also associated with increase in number of MC1R variants. The risk of melanoma associated with at least two MC1R variants was 2.6-fold higher than the risk associated with only one variant (odds ratio = 5.83 [95% confidence interval = 3.60 to 9.46] vs 2.25 [95% confidence interval = 1.44 to 3.52]; Ptrend = 1.86 × 10−8). The joint analysis of MC1R variants and host phenotypes showed statistically significant associations of melanoma risk, together with MC1R variants (.0001 ≤ P ≤ .04), hair color (.006 ≤ P ≤ .06), and number of nevi (6.9 × 10−6 ≤ P ≤ .02).</p>
<p><b>Conclusion</b> Results show that MC1R variants, hair color, and number of nevi were jointly associated with melanoma risk in CDKN2A mutation carriers. This joint association may have important consequences for risk assessments in familial settings.</p>
Development of a RAD-Seq Based DNA Polymorphism Identification Software, AgroMarker Finder, and Its Application in Rice Marker-Assisted Breeding
Abstract
Rapid and accurate genome-wide marker detection is essential to the marker-assisted breeding and functional genomics studies. In this work, we developed an integrated software, AgroMarker Finder (AMF: http://erp.novelbio.com/AMF), for providing graphical user interface (GUI) to facilitate the recently developed restriction-site associated DNA (RAD) sequencing data analysis in rice. By application of AMF, a total of 90,743 high-quality markers (82,878 SNPs and 7,865 InDels) were detected between rice varieties JP69 and Jiaoyuan5A. The density of the identified markers is 0.2 per Kb for SNP markers, and 0.02 per Kb for InDel markers. Sequencing validation revealed that the accuracy of genome-wide marker detection by AMF is 93%. In addition, a validated subset of 82 SNPs and 31 InDels were found to be closely linked to 117 important agronomic trait genes, providing a basis for subsequent marker-assisted selection (MAS) and variety identification. Furthermore, we selected 12 markers from 31 validated InDel markers to identify seed authenticity of variety Jiaoyuanyou69, and we also identified 10 markers closely linked to the fragrant gene BADH2 to minimize linkage drag for Wuxiang075 (BADH2 donor)/Jiachang1 recombinants selection. Therefore, this software provides an efficient approach for marker identification from RAD-seq data, and it would be a valuable tool for plant MAS and variety protection
High-throughput 18K SNP array to assess genetic variability of the main grapevine cultivars from Sicily
The viticulture of Sicily, for its vocation, is one of the most important and ancient forms in Italy. Autochthonous grapevine cultivars, many of which known throughout the world, have always been cultivated in the island from many centuries. With the aim to preserve this large grapevine diversity, previous studies have already started to assess the genetic variability among the Sicilian cultivars by using morphological and microsatellite markers. In this study, simple sequence repeat (SSR) were utilized to verify the true-to-typeness of a large clone collection (101) belonging to 21 biotypes of the most 10 cultivated Sicilian cultivars. Afterwards, 42 Organization Internationale de la Vigne et du Vin (OIV) descriptors and a high-throughput single nucleotide polymorphism (SNP) genotyping array (Vitis18kSNP) were applied to assess genetic variability among cultivars and biotypes of the same cultivar. Ampelographic traits and high-throughput SNP genotyping platforms provided an accuracy estimation of genetic diversity in the Sicilian germplasm, showing the relationships among cultivars by cluster and multivariate analyses. The large SNP panel defined sub-clusters unable to discern among biotypes, previously classified by ampelographic analysis, belonging to each cultivar. These results suggested that a very large number of SNP did not cover the genome regions harboring few morphological traits. Genetic structure of the collection revealed a clear optimum number of groups for K = 3, clustering in the same group a significant portion of family-related genotypes. Parentage analysis highlighted significant relationships among Sicilian grape cultivars and Sangiovese, as already reported, but also the first evidences of the relationships between Nero d’Avola and both Inzolia and Catarratto. Finally, a small panel of highly informative markers (12 SNPs) allowed us to isolate a private profile for each Sicilian cultivar, providing a new tool for cultivar identification
Clones Identification and Genetic Characterization of Garnacha Grapevine by Means of Different PCR-Derived Marker Systems
This study uses PCR-derived marker systems to investigate the extent and distribution of genetic variability of 53 Garnacha accessions coming from Italy, France and Spain. The samples studied include 28 Italian accessions (named Tocai rosso in Vicenza area; Alicante in Sicily and Elba island; Gamay perugino in Perugia province; Cannonau in Sardinia), 19 Spanish accessions of different types (named Garnacha tinta, Garnacha blanca, Garnacha peluda, Garnacha roja, Garnacha erguida, Garnacha roya) and 6 French accessions (named Grenache and Grenache noir). In order to verify the varietal identity of the samples, analyses based on 14 simple sequence repeat (SSR) loci were performed. The presence of an additional allele at ISV3 locus (151 bp) was found in four Tocai rosso accessions and in a Sardinian Cannonau clone, that are, incidentally, chimeras. In addition to microsatellite analysis, intravarietal variability study was performed using AFLP, SAMPL and M-AFLP molecular markers. AFLPs could discriminate among several Garnacha samples; SAMPLs allowed distinguishing few genotypes on the basis of their geographic origin, whereas M-AFLPs revealed plant-specific markers, differentiating all accessions. Italian samples showed the greatest variability among themselves, especially on the basis of their different provenance, while Spanish samples were the most similar, in spite of their morphological diversity
Search for a new gauge boson in pi(0) decays
A search was made for a new light gauge boson X which might be produced in pi(0) -->, gamma + X decay from neutral pions generated by 450 GeV protons in the CERN SPS neutrino target. The X's would penetrate the downstream shielding and be observed in the NOMAD detector via the Primakoff effect, in the process of X --> pi(0) conversion in the external Coulomb field of a nucleus. With 1.45 x 10(18) protons on target, 20 candidate events with energy between 8 and 140 GeV were found from the analysis of neutrino data. This number is in agreement with the expectation of 18.1 +/- 2.8 background events from standard neutrino processes. A new 90% C.L. upper limit on the branching ratio Br(pi(0) --> Y + X)< (3.3 to 1.9)X 10(-5) for X masses ranging from 0 to 120 MeV/c(2) is obtained
Additional chromosome abnormalities in patients with acute promyelocytic leukemia treated with all-trans retinoic acid and chemotherapy
Background Acute promyelocytic leukemia is a subtype of acute myeloid leukemia characterized by the t(15;17). The incidence and prognostic significance of additional chromosomal abnormalities in acute promyelocytic leukemia is still a controversial matter. Design and Methods Based on cytogenetic data available for 495 patients with acute promyelocytic leukemia enrolled in two consecutive PETHEMA trials (LPA96 and LPA99), we analyzed the incidence, characteristics, and outcome of patients with acute promyelocytic leukemia with and without additional chromosomal abnormalities who had been treated with all-trans retinoic acid plus anthracycline monochemotherapy for induction and consolidation. Results Additional chromosomal abnormalities were observed in 140 patients (28%). Trisomy 8 was the most frequent abnormality (36%), followed by abn(7q) (5%). Patients with additional chromosomal abnormalities more frequently had coagulopathy (P=0.03), lower platelet counts (P=0.02), and higher relapse-risk scores (P=0.02) than their counterparts without additional abnormalities. No significant association with FLT3/ITD or other clinicopathological characteristics was demonstrated. Patients with and without additional chromosomal abnormalities had similar complete remission rates (90% and 91%, respectively). Univariate analysis showed that additional chromosomal abnormalities were associated with a lower relapse-free survival in the LPA99 trial (P=0.04), but not in the LPA96 trial. However, neither additional chromosomal abnormalities overall nor any specific abnormality was identified as an independent risk factor for relapse in multivariate analysis. Conclusions The lack of independent prognostic value of additional chromosomal abnormalities in acute promyelocytic leukemia does not support the use of alternative therapeutic strategies when such abnormalities are found
Antiphospholipid Antibodies Bind ATP: A putative Mechanism for the Pathogenesis of Neuronal Dysfunction
Antiphospholipid antibodies (aPL) generated in experimental animals
cross-react with ATP. We therefore examined the possibility that aPL IgG from
human subjects bind to ATP by affinity column and an enzyme linked
immunosorbent assay (ELISA). Sera with high levels of aPL IgG were collected
from 12 patients with the antiphospholipid syndrome (APS). IgG fractions from
10 of 12 APS patients contained aPL that could be affinity-bound to an ATP
column and completely eluted with NaCl 0.5 M. A significant (>50%) inhibition
of aPL IgG binding by ATP 5 mM was found in the majority. Similar inhibition
was obtained with ADP but not with AMP or cAMP. All the affinity purified
anti-ATP antibodies also bound β2-glycoprotein-I (β2-GPI, also known as
apolipoprotein H) suggesting that, similar to most pathogenic aPL, their binding
depends on this serum cofactor. We further investigated this possibility and found
that the binding of β2-GPI to the ATP column was similar to that of aPL IgG in
that most was reversed by NaCl 0.5 M. Furthermore, addition of β2-GPI to aPL
IgG significantly increased the amount of aPL binding to an ATP column. We
conclude that aPL IgG bind ATP, probably through β2-GPI. This binding could
interfere
with the normal extracellular function of ATP and similar neurotransmitters
HLA class II DNA typing in a large series of European patients with systemic lupus erythematosus: correlations with clinical and autoantibody subsets
We conducted this study to determine the HLA class II allele associations in a large cohort of patients of homogeneous ethnic derivation with systemic lupus erythematosus (SLE). The large sample size allowed us to stratify patients according to their clinical and serologic characteristics. We studied 577 European Caucasian patients with SLE. Antinuclear antibodies (Hep-2 cells), anti-dsDNA antibodies (Crithidia luciliae), and antibodies to extractable nuclear antigens Ro (SS-A), La (SS-B), U1-RNP, Sm, Jo1, SCL70, and PCNA, were detected in all patients. Molecular typing of HLA-DRB1, DRB3, DQA1, and DQB1 loci was performed by the polymerase chain reaction-sequence specific oligonucleotide probes (PCR-SSOP) method. We found a significantly increased frequency of DRB1*03, DRB1*15, DRB1*16, DQA1*0102, DQB1*0502, DQB1*0602, DQB1*0201, DQB1*0303, and DQB1*0304 in lupus patients as compared with healthy controls. In addition, DRB1*03 was associated with anti-Ro, anti-La, pleuritis, and involvement of lung, kidney, and central nervous system. DRB1*15 and DQB1*0602 were associated with anti-dsDNA antibodies; DQB1*0201 with anti-Ro and anti-La, leukopenia, digital skin vasculitis, and pleuritis; and DQB1*0502 was associated with anti-Ro, renal involvement, discoid lupus, and livedo reticularis. In conclusion, our study shows some new HLA clinical and serologic associations in SLE and further confirms that the role of MHC genes is mainly to predispose to particular serologic and clinical manifestations of this disease
B cell epitope of human cytomegalovirus phosphoprotein 65 (HCMV pp65) induced anti-dsDNA antibody in BALB/c mice
Analysis of DNA Methylation in Various Swine Tissues
DNA methylation is known to play an important role in regulating gene expression during biological development and tissue differentiation in eukaryotes. In this study, we used the fluorescence-labeled methylation-sensitive amplified polymorphism (F-MSAP) method to assess the extent and pattern of cytosine methylation in muscle, heart, liver, spleen, lung, kidney and stomach from the swine strain Laiwu, and we also examined specific methylation patterns in the seven tissues. In total, 96,371 fragments, each representing a recognition site cleaved by either or both EcoRI + HpaII and EcoRI + MspI, the HpaII and MspI are isoschizomeric enzymes, were amplified using 16 pairs of selective primers. A total of 50,094 sites were found to be methylated at cytosines in seven tissues. The incidence of DNA methylation was approximately 53.99% in muscle, 51.24% in the heart, 50.18% in the liver, 53.31% in the spleen, 51.97% in the lung, 51.15% in the kidney and 53.39% in the stomach, as revealed by the incidence of differential digestion. Additionally, differences in DNA methylation levels imply that such variations may be related to specific gene expression during tissue differentiation, growth and development. Three types of bands were generated in the F-MSAP profile, the total numbers of these three types of bands in the seven tissues were 46,277, 24,801 and 25,293, respectively
- …
