464 research outputs found

    Defending the genome from the enemy within:mechanisms of retrotransposon suppression in the mouse germline

    Get PDF
    The viability of any species requires that the genome is kept stable as it is transmitted from generation to generation by the germ cells. One of the challenges to transgenerational genome stability is the potential mutagenic activity of transposable genetic elements, particularly retrotransposons. There are many different types of retrotransposon in mammalian genomes, and these target different points in germline development to amplify and integrate into new genomic locations. Germ cells, and their pluripotent developmental precursors, have evolved a variety of genome defence mechanisms that suppress retrotransposon activity and maintain genome stability across the generations. Here, we review recent advances in understanding how retrotransposon activity is suppressed in the mammalian germline, how genes involved in germline genome defence mechanisms are regulated, and the consequences of mutating these genome defence genes for the developing germline

    Do regional brain volumes and major depressive disorder share genetic architecture?:A study of Generation Scotland (<i>n</i>=19,762), UK Biobank (<i>n</i>=24,048) and the English Longitudinal Study of Ageing (<i>n</i>=5,766)

    Get PDF
    Major depressive disorder (MDD) is a heritable and highly debilitating condition. It is commonly associated with subcortical volumetric abnormalities, the most replicated of these being reduced hippocampal volume. Using the most recent published data from Enhancing Neuroimaging Genetics through Meta-analysis (ENIGMA) consortium's genome-wide association study of regional brain volume, we sought to test whether there is shared genetic architecture between seven subcortical brain volumes and intracranial volume (ICV) and MDD. We explored this using linkage disequilibrium score regression, polygenic risk scoring (PRS) techniques, Mendelian randomisation (MR) analysis and BUHMBOX. Utilising summary statistics from ENIGMA and Psychiatric Genomics Consortium, we demonstrated that hippocampal volume was positively genetically correlated with MDD (rG=0.46, P=0.02), although this did not survive multiple comparison testing. None of the other six brain regions studied were genetically correlated and amygdala volume heritability was too low for analysis. Using PRS analysis, no regional volumetric PRS demonstrated a significant association with MDD or recurrent MDD. MR analysis in hippocampal volume and MDD identified no causal association, however, BUHMBOX analysis identified genetic subgrouping in GS:SFHS MDD cases only (P=0.00281). In this study, we provide some evidence that hippocampal volume and MDD may share genetic architecture in a subgroup of individuals, albeit the genetic correlation did not survive multiple testing correction and genetic subgroup heterogeneity was not replicated. In contrast, we found no evidence to support a shared genetic architecture between MDD and other regional subcortical volumes or ICV

    Search for new physics in the multijet and missing transverse momentum final state in proton-proton collisions at √s=8 Tev

    Get PDF
    Peer reviewe

    A Subset of Latency-Reversing Agents Expose HIV-Infected Resting CD4⁺ T-Cells to Recognition by Cytotoxic T-Lymphocytes

    Get PDF
    Resting CD4⁺ T-cells harboring inducible HIV proviruses are a critical reservoir in antiretroviral therapy (ART)-treated subjects. These cells express little to no viral protein, and thus neither die by viral cytopathic effects, nor are efficiently cleared by immune effectors. Elimination of this reservoir is theoretically possible by combining latency-reversing agents (LRAs) with immune effectors, such as CD8⁺ T-cells. However, the relative efficacy of different LRAs in sensitizing latently-infected cells for recognition by HIV-specific CD8⁺ T-cells has not been determined. To address this, we developed an assay that utilizes HIV-specific CD8⁺ T-cell clones as biosensors for HIV antigen expression. By testing multiple CD8⁺ T-cell clones against a primary cell model of HIV latency, we identified several single agents that primed latently-infected cells for CD8⁺ T-cell recognition, including IL-2, IL-15, two IL-15 superagonists (IL-15SA and ALT-803), prostratin, and the TLR-2 ligand Pam₃CSK₄. In contrast, we did not observe CD8⁺ T-cell recognition of target cells following treatment with histone deacetylase inhibitors or with hexamethylene bisacetamide (HMBA). In further experiments we demonstrate that a clinically achievable concentration of the IL-15 superagonist ‘ALT-803’, an agent presently in clinical trials for solid and hematological tumors, primes the natural ex vivo reservoir for CD8⁺ T-cell recognition. Thus, our results establish a novel experimental approach for comparative evaluation of LRAs, and highlight ALT-803 as an LRA with the potential to synergize with CD8⁺ T-cells in HIV eradication strategies.United States. National Institutes of Health (AI111860

    Measurement of Higgs boson production and properties in the WW decay channel with leptonic final states

    Get PDF
    Peer reviewe

    Study of double parton scattering using W+2-jet events in proton-proton collisions at √s=7 TeV

    Get PDF
    Peer reviewe

    Prognostic model to predict postoperative acute kidney injury in patients undergoing major gastrointestinal surgery based on a national prospective observational cohort study.

    Get PDF
    Background: Acute illness, existing co-morbidities and surgical stress response can all contribute to postoperative acute kidney injury (AKI) in patients undergoing major gastrointestinal surgery. The aim of this study was prospectively to develop a pragmatic prognostic model to stratify patients according to risk of developing AKI after major gastrointestinal surgery. Methods: This prospective multicentre cohort study included consecutive adults undergoing elective or emergency gastrointestinal resection, liver resection or stoma reversal in 2-week blocks over a continuous 3-month period. The primary outcome was the rate of AKI within 7 days of surgery. Bootstrap stability was used to select clinically plausible risk factors into the model. Internal model validation was carried out by bootstrap validation. Results: A total of 4544 patients were included across 173 centres in the UK and Ireland. The overall rate of AKI was 14·2 per cent (646 of 4544) and the 30-day mortality rate was 1·8 per cent (84 of 4544). Stage 1 AKI was significantly associated with 30-day mortality (unadjusted odds ratio 7·61, 95 per cent c.i. 4·49 to 12·90; P < 0·001), with increasing odds of death with each AKI stage. Six variables were selected for inclusion in the prognostic model: age, sex, ASA grade, preoperative estimated glomerular filtration rate, planned open surgery and preoperative use of either an angiotensin-converting enzyme inhibitor or an angiotensin receptor blocker. Internal validation demonstrated good model discrimination (c-statistic 0·65). Discussion: Following major gastrointestinal surgery, AKI occurred in one in seven patients. This preoperative prognostic model identified patients at high risk of postoperative AKI. Validation in an independent data set is required to ensure generalizability

    Measurements of the tt¯ charge asymmetry using the dilepton decay channel in pp collisions at √s=7 TeV

    Get PDF
    Peer reviewe

    The Neutrophil's Eye-View: Inference and Visualisation of the Chemoattractant Field Driving Cell Chemotaxis In Vivo

    Get PDF
    As we begin to understand the signals that drive chemotaxis in vivo, it is becoming clear that there is a complex interplay of chemotactic factors, which changes over time as the inflammatory response evolves. New animal models such as transgenic lines of zebrafish, which are near transparent and where the neutrophils express a green fluorescent protein, have the potential to greatly increase our understanding of the chemotactic process under conditions of wounding and infection from video microscopy data. Measurement of the chemoattractants over space (and their evolution over time) is a key objective for understanding the signals driving neutrophil chemotaxis. However, it is not possible to measure and visualise the most important contributors to in vivo chemotaxis, and in fact the understanding of the main contributors at any particular time is incomplete. The key insight that we make in this investigation is that the neutrophils themselves are sensing the underlying field that is driving their action and we can use the observations of neutrophil movement to infer the hidden net chemoattractant field by use of a novel computational framework. We apply the methodology to multiple in vivo neutrophil recruitment data sets to demonstrate this new technique and find that the method provides consistent estimates of the chemoattractant field across the majority of experiments. The framework that we derive represents an important new methodology for cell biologists investigating the signalling processes driving cell chemotaxis, which we label the neutrophils eye-view of the chemoattractant field
    corecore