1,579 research outputs found

    Cardiosphere-derived cells suppress allogeneic lymphocytes by production of PGE2 acting via the EP4 receptor

    Get PDF
    derived cells (CDCs) are a cardiac progenitor cell population, which have been shown to possess cardiac regenerative properties and can improve heart function in a variety of cardiac diseases. Studies in large animal models have predominantly focussed on using autologous cells for safety, however allogeneic cell banks would allow for a practical, cost-effective and efficient use in a clinical setting. The aim of this work was to determine the immunomodulatory status of these cells using CDCs and lymphocytes from 5 dogs. CDCs expressed MHC I but not MHC II molecules and in mixed lymphocyte reactions demonstrated a lack of lymphocyte proliferation in response to MHC-mismatched CDCs. Furthermore, MHC-mismatched CDCs suppressed lymphocyte proliferation and activation in response to Concanavalin A. Transwell experiments demonstrated that this was predominantly due to direct cell-cell contact in addition to soluble mediators whereby CDCs produced high levels of PGE2 under inflammatory conditions. This led to down-regulation of CD25 expression on lymphocytes via the EP4 receptor. Blocking prostaglandin synthesis restored both, proliferation and activation (measured via CD25 expression) of stimulated lymphocytes. We demonstrated for the first time in a large animal model that CDCs inhibit proliferation in allo-reactive lymphocytes and have potent immunosuppressive activity mediated via PGE2

    The views of older women towards mammographic screening: a qualitative and quantitative study

    Get PDF
    Purpose: Mammographic screening has improved breast cancer survival in the screened age group. This improved survival has not been seen in older women (>70 years) where screening uptake is low. This study explores the views, knowledge and attitudes of older women towards screening. Methods: Women (>70) were interviewed about breast screening. Interview findings informed the development of a questionnaire which was sent to 1000 women (>70) to quantify their views regarding screening. Results: Twenty-six women were interviewed and a questionnaire designed. The questionnaire response rate was 48.3% (479/992). Over half (52.9%, 241/456) of respondents were unaware they could request mammography by voluntary self-referral and were unaware of how to arrange this. Most (81.5% 383/470) had not attended breast screening since turning 70. Most (75.6%, 343/454) felt screening was beneficial and would attend if invited. Most, (90.1%, 412/457) felt screening should be offered to all women regardless of age or health. Conclusions: There is a lack of knowledge about screening in older women. The majority felt that invitation to screening should be extended to the older age group regardless of age or health. The current under-utilised system of voluntary self referral is not supported by older women

    Hyaline fibromatosis syndrome inducing mutations in the ectodomain of anthrax toxin receptor 2 can be rescued by proteasome inhibitors.

    Get PDF
    Hyaline Fibromatosis Syndrome (HFS) is a human genetic disease caused by mutations in the anthrax toxin receptor 2 (or cmg2) gene, which encodes a membrane protein thought to be involved in the homeostasis of the extracellular matrix. Little is known about the structure and function of the protein or the genotype-phenotype relationship of the disease. Through the analysis of four patients, we identify three novel mutants and determine their effects at the cellular level. Altogether, we show that missense mutations that map to the extracellular von Willebrand domain or the here characterized Ig-like domain of CMG2 lead to folding defects and thereby to retention of the mutated protein in the endoplasmic reticulum (ER). Mutations in the Ig-like domain prevent proper disulphide bond formation and are more efficiently targeted to ER-associated degradation. Finally, we show that mutant CMG2 can be rescued in fibroblasts of some patients by treatment with proteasome inhibitors and that CMG2 is then properly transported to the plasma membrane and signalling competent, identifying the ER folding and degradation pathway components as promising drug targets for HFS

    Optogenetic stimulation of a hippocampal engram activates fear memory recall

    Get PDF
    A specific memory is thought to be encoded by a sparse population of neurons. These neurons can be tagged during learning for subsequent identification3 and manipulation. Moreover, their ablation or inactivation results in reduced memory expression, suggesting their necessity in mnemonic processes. However, the question of sufficiency remains: it is unclear whether it is possible to elicit the behavioural output of a specific memory by directly activating a population of neurons that was active during learning. Here we show in mice that optogenetic reactivation of hippocampal neurons activated during fear conditioning is sufficient to induce freezing behaviour. We labelled a population of hippocampal dentate gyrus neurons activated during fear learning with channelrhodopsin-2 (ChR2) and later optically reactivated these neurons in a different context. The mice showed increased freezing only upon light stimulation, indicating light-induced fear memory recall. This freezing was not detected in non-fear-conditioned mice expressing ChR2 in a similar proportion of cells, nor in fear-conditioned mice with cells labelled by enhanced yellow fluorescent protein instead of ChR2. Finally, activation of cells labelled in a context not associated with fear did not evoke freezing in mice that were previously fear conditioned in a different context, suggesting that light-induced fear memory recall is context specific. Together, our findings indicate that activating a sparse but specific ensemble of hippocampal neurons that contribute to a memory engram is sufficient for the recall of that memory. Moreover, our experimental approach offers a general method of mapping cellular populations bearing memory engrams.RIKEN Brain Science InstituteNational Institutes of Health (U.S.) (Grant R01-MH078821)National Institutes of Health (U.S.) (Grant P50-MH58880

    AmrZ is a major determinant of c-di-GMP levels in Pseudomonas fluorescens F113

    Get PDF
    The transcriptional regulator AmrZ is a global regulatory protein conserved within the pseudomonads. AmrZ can act both as a positive and a negative regulator of gene expression, controlling many genes implicated in environmental adaption. Regulated traits include motility, iron homeostasis, exopolysaccharides production and the ability to form biofilms. In Pseudomonas fluorescens F113, an amrZ mutant presents a pleiotropic phenotype, showing increased swimming motility, decreased biofilm formation and very limited ability for competitive colonization of rhizosphere, its natural habitat. It also shows different colony morphology and binding of the dye Congo Red. The amrZ mutant presents severely reduced levels of the messenger molecule cyclic-di-GMP (c-di-GMP), which is consistent with the motility and biofilm formation phenotypes. Most of the genes encoding proteins with diguanylate cyclase (DGCs) or phosphodiesterase (PDEs) domains, implicated in c-di-GMP turnover in this bacterium, appear to be regulated by AmrZ. Phenotypic analysis of eight mutants in genes shown to be directly regulated by AmrZ and encoding c-di-GMP related enzymes, showed that seven of them were altered in motility and/or biofilm formation. The results presented here show that in P. fluorescens, AmrZ determines c-di-GMP levels through the regulation of a complex network of genes encoding DGCs and PDEs

    The impact of positive psychological interventions on well-being in healthy elderly people

    Get PDF
    This systematic review aims to evaluate the impact of Positive Psychological Interventions (PPIs) on well-being in healthy older adults. Systematic review of PPIs obtained from three electronic databases (PsycINFO, Scopus, and Web of Science) was undertaken. Inclusion criteria were: that they were positive psychology intervention, included measurement of well-being, participants were aged over 60 years, and the studies were in English. The Cochrane Collaboration Guidelines dimensions of quality control, randomization, comparability, follow-up rate, dropout, blinding assessors are used to rate the quality of studies by two reviewers independently. The RE-AIM (Reach, Efficacy, Adoption, Implementation, and Maintenance) for evaluation of PPIs effectiveness was also applied. The final review included eight articles, each describing a positive psychological intervention study. The reminiscence interventions were the most prevalent type of PPIs to promote and maintain well-being in later life. Only two studies were rated as high quality, four were of moderate-quality and two were of low-quality. Overall results indicated that efficacy criteria (89%), reach criteria (85%), adoption criteria (73%), implementation criteria (67%), and maintenance criteria (4%) across a variety of RE-AIM dimensions. Directions for future positive psychological research related to RE-AIM, and implications for decision-making, are described

    Coadministration of the Three Antigenic Leishmania infantum Poly (A) Binding Proteins as a DNA Vaccine Induces Protection against Leishmania major Infection in BALB/c Mice

    Full text link
    Highly conserved intracellular proteins from Leishmania have been described as antigens in natural and experimental infected mammals. The present study aimed to evaluate the antigenicity and prophylactic properties of the Leishmania infantum Poly (A) binding proteins (LiPABPs). Three different members of the LiPABP family have been described. Recombinant tools based on these proteins were constructed: recombinant proteins and DNA vaccines. The three recombinant proteins were employed for coating ELISA plates. Sera from human and canine patients of visceral leishmaniasis and human patients of mucosal leishmaniasis recognized the three LiPABPs. In addition, the protective efficacy of a DNA vaccine based on the combination of the three Leishmania PABPs has been tested in a model of progressive murine leishmaniasis: BALB/c mice infected with Leishmania major. The induction of a Th1-like response against the LiPABP family by genetic vaccination was able to down-regulate the IL-10 predominant responses elicited by parasite LiPABPs after infection in this murine model. This modulation resulted in a partial protection against L. major infection. LiPABP vaccinated mice showed a reduction on the pathology that was accompanied by a decrease in parasite burdens, in antibody titers against Leishmania antigens and in the IL-4 and IL-10 parasite-specific mediated responses in comparison to control mice groups immunized with saline or with the non-recombinant plasmid. The results presented here demonstrate for the first time the prophylactic properties of a new family of Leishmania antigenic intracellular proteins, the LiPABPs. The redirection of the immune response elicited against the LiPABP family (from IL-10 towards IFN-γ mediated responses) by genetic vaccination was able to induce a partial protection against the development of the disease in a highly susceptible murine model of leishmaniasisThe study was supported in Spain by grants from Ministerio de Ciencia e Innovación FIS PI11/00095 and FISPI14/00366 from the Instituto de Salud Carlos III within the Network of TropicalDiseases Research (VI P I+D+I 2008-2011, ISCIII -Subdirección General de Redes y Centros de Investigación Cooperativa (RD12/0018/0009)). This work was also supported in Brazil by a grant from CNPq (Ciencia sem Fronteiras-PVE 300174/2014-4). A CBMSO institutional grant from Fundación Ramón Areces is also acknowledged. EAFC is a grant recipient of CNPq. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscrip

    Low potency toxins reveal dense interaction networks in metabolism

    Get PDF
    Background The chemicals of metabolism are constructed of a small set of atoms and bonds. This may be because chemical structures outside the chemical space in which life operates are incompatible with biochemistry, or because mechanisms to make or utilize such excluded structures has not evolved. In this paper I address the extent to which biochemistry is restricted to a small fraction of the chemical space of possible chemicals, a restricted subset that I call Biochemical Space. I explore evidence that this restriction is at least in part due to selection again specific structures, and suggest a mechanism by which this occurs. Results Chemicals that contain structures that our outside Biochemical Space (UnBiological groups) are more likely to be toxic to a wide range of organisms, even though they have no specifically toxic groups and no obvious mechanism of toxicity. This correlation of UnBiological with toxicity is stronger for low potency (millimolar) toxins. I relate this to the observation that most chemicals interact with many biological structures at low millimolar toxicity. I hypothesise that life has to select its components not only to have a specific set of functions but also to avoid interactions with all the other components of life that might degrade their function. Conclusions The chemistry of life has to form a dense, self-consistent network of chemical structures, and cannot easily be arbitrarily extended. The toxicity of arbitrary chemicals is a reflection of the disruption to that network occasioned by trying to insert a chemical into it without also selecting all the other components to tolerate that chemical. This suggests new ways to test for the toxicity of chemicals, and that engineering organisms to make high concentrations of materials such as chemical precursors or fuels may require more substantial engineering than just of the synthetic pathways involved

    Removal processes and estrogenic activity of bisphenol—A and triclosan using microalgae

    Get PDF
    \ua9 2024 The AuthorsThis study aimed to evaluate the effect of microalgal photoautotrophic treatment on estrogenic activity (EA) and removal process of two emerging contaminants (ECs), bisphenol-A (BPA) and triclosan (TCS), in synthetic wastewater (SWW). The concentration used for BPA (17 mg/L) and TCS (325 μg/L) is the median effective concentration (EC50). Two conditions were evaluated, using a microalgae inoculum of ≈300 and ≈500 mg TSS/L (Total Suspended Solids per liter). For BPA, biodegradation was found to be the removal process contributing to the highest percentage removal, reaching >40 % for both initial microalgae inoculum (≈300 and ≈500 mg TSS/L). For TCS, the highest removal process was photodegradation, with >28 % (sum of direct and indirect removal). However, for TCS it was observed that for TSS ≈ 500 mg/L TSS, sorption (adsorption and absorption) increased by ≈17 % with respect to that determined for TSS ≈ 300 mg/L. Microalgae photoautotrophic treatment, using ≈500 mg TSS/L, resulted in a reduction of EA for TCS (by 33 %); but a 1.13-fold increase of EA for BPA. No EA effect of BPA and TCS was observed at ≈300 mg TSS/L. Both treatments resulted in a removal of >95 % of BPA and ≈86 % of TCS. For direct photodegradation, removals of both BPA and TCS were quantified as 3.8 % and 14.4 %, respectively. However, an increase in EA was observed for both ECs (1.79-fold for BPA and 1.23-fold for TCS). Indirect photodegradation resulted in removals of 26.2 % and 14.1 %, respectively. Additionally, EA showed a 2.4-fold increase for BPA, whilst a 17.99 % decrease was observed for TCS. In conclusion, no linear correlation was observed between EA and EC removals. Microalgae photoautotrophic treatment resulted in high removal efficiencies of TCS and BPA, as well as a decreased EA of TCS
    corecore