10,597 research outputs found
Seismic responses of civil structures under magnetorheological-device direct control
This paper presents an efficient control strategy for magnetorheological (MR) dampers embedded in building structures to mitigate quake-induced vibrations. In this work, MR dampers are used as semi-active devices, taking the advantages of the fail-safe operation and low power requirement. By using a static hysteresis model for the MR damper, a suitable controller is proposed here for direct control of the supply currents of the MR dampers using feedback linearization. The dampers are configured in a differential mode to counteract the force-offset problem from the use of a single damper. The effectiveness of the proposed technique is verified in simulation by using a ten-storey building model subject to quake-like excitations
Modelling of a falling film evaporator for dairy processes
The modelling of dairy processing using commercial process simulator lags behind chemical and petrochemical process simulation. This is due to fact that most commercial process simulators do not contain food (e.g. milk) components in their component libraries, required for dairy process simulation. Recently, a “pseudo” milk containing hypothetical components (e.g. milk fat) was developed in a commercial process simulator for milk process simulation (Zhang et al. 2014). In this work, “pseudo” milk was used to model a falling film evaporator used in a milk powder production plant. It shows that commercial process simulators have capability to simulate dairy processes. The model results were validated using both literature and industry data. The model results showed around 0.1 – 9.4% differences between simulated and actual results. This work extends the capabilities of commercial process simulators and can also help practicing engineers to understand potential process improvements
ACL Loading And Jump Performance Are Decreased With Increased Knee Flexion Landing And Soft Landing
Room temperature plasmon laser by total internal reflection
Plasmon lasers create and sustain intense and coherent optical fields below
light's diffraction limit with the unique ability to drastically enhance
light-matter interactions bringing fundamentally new capabilities to
bio-sensing, data storage, photolithography and optical communications.
However, these important applications require room temperature operation, which
remains a major hurdle. Here, we report a room temperature semiconductor
plasmon laser with both strong cavity feedback and optical confinement to
1/20th of the wavelength. The strong feedback arises from total internal
reflection of surface plasmons, while the confinement enhances the spontaneous
emission rate by up to 20 times.Comment: 8 Page, 2 Figure
The HIV Genomic Incidence Assay Meets False Recency Rate and Mean Duration of Recency Infection Performance Standards.
HIV incidence is a primary metric for epidemic surveillance and prevention efficacy assessment. HIV incidence assay performance is evaluated via false recency rate (FRR) and mean duration of recent infection (MDRI). We conducted a meta-analysis of 438 incident and 305 chronic specimens' HIV envelope genes from a diverse global cohort. The genome similarity index (GSI) accurately characterized infection stage across diverse host and viral factors. All except one chronic specimen had GSIs below 0.67, yielding a FRR of 0.33 [0-0.98] %. We modeled the incidence assay biomarker dynamics with a logistic link function assuming individual variabilities in a Beta distribution. The GSI probability density function peaked close to 1 in early infection and 0 around two years post infection, yielding MDRI of 420 [361, 467] days. We tested the assay by newly sequencing 744 envelope genes from 59 specimens of 21 subjects who followed from HIV negative status. Both standardized residuals and Anderson-Darling tests showed that the test dataset was statistically consistent with the model biomarker dynamics. This is the first reported incidence assay meeting the optimal FRR and MDRI performance standards. Signatures of HIV gene diversification can allow precise cross-sectional surveillance with a desirable temporal range of incidence detection
Electric Field-Tuned Topological Phase Transition in Ultra-Thin Na3Bi - Towards a Topological Transistor
The electric field induced quantum phase transition from topological to
conventional insulator has been proposed as the basis of a topological field
effect transistor [1-4]. In this scheme an electric field can switch 'on' the
ballistic flow of charge and spin along dissipationless edges of the
two-dimensional (2D) quantum spin Hall insulator [5-9], and when 'off' is a
conventional insulator with no conductive channels. Such as topological
transistor is promising for low-energy logic circuits [4], which would
necessitate electric field-switched materials with conventional and topological
bandgaps much greater than room temperature, significantly greater than
proposed to date [6-8]. Topological Dirac semimetals(TDS) are promising systems
in which to look for topological field-effect switching, as they lie at the
boundary between conventional and topological phases [3,10-16]. Here we use
scanning probe microscopy/spectroscopy (STM/STS) and angle-resolved
photoelectron spectroscopy (ARPES) to show that mono- and bilayer films of TDS
Na3Bi [3,17] are 2D topological insulators with bulk bandgaps >400 meV in the
absence of electric field. Upon application of electric field by doping with
potassium or by close approach of the STM tip, the bandgap can be completely
closed then re-opened with conventional gap greater than 100 meV. The large
bandgaps in both the conventional and quantum spin Hall phases, much greater
than the thermal energy kT = 25 meV at room temperature, suggest that ultrathin
Na3Bi is suitable for room temperature topological transistor operation
Two-step stabilization of orbital order and the dynamical frustration of spin in the model charge-transfer insulator KCuF3
We report a combined experimental and theoretical study of KCuF3, which
offers - because of this material's relatively simple lattice structure and
valence configuration (d9, i.e., one hole in the d-shell) - a particularly
clear view of the essential role of the orbital degree of freedom in governing
the dynamical coupling between the spin and lattice degrees of freedom. We
present Raman and x-ray scattering evidence that the phase behaviour of KCuF3
is dominated above the Neel temperature (T_N = 40 K) by coupled orbital/lattice
fluctuations that are likely associated with rotations of the CuF6 octahedra,
and we show that these orbital fluctuations are interrupted by a static
structural distortion that occurs just above T_N. A detailed model of the
orbital and magnetic phases of KCuF3 reveals that these orbital fluctuations -
and the related frustration of in-plane spin-order-are associated with the
presence of nearly degenerate low-energy spin-orbital states that are highly
susceptible to thermal fluctuations over a wide range of temperatures. A
striking implication of these results is that the ground state of KCuF3 at
ambient pressure lies near a quantum critical point associated with an
orbital/spin liquid phase that is obscured by emergent Neel ordering of the
spins; this exotic liquid phase might be accessible via pressure studies.Comment: 13 pages, 3 figure
Dietary elimination of children with food protein induced gastrointestinal allergy – micronutrient adequacy with and without a hypoallergenic formula?
Background:
The cornerstone for management of Food protein-induced gastrointestinal allergy (FPGIA) is dietary exclusion; however the micronutrient intake of this population has been poorly studied. We set out to determine the dietary intake of children on an elimination diet for this food allergy and hypothesised that the type of elimination diet and the presence of a hypoallergenic formula (HF) significantly impacts on micronutrient intake.
Method:
A prospective observational study was conducted on children diagnosed with FPIGA on an exclusion diet who completed a 3 day semi-quantitative food diary 4 weeks after commencing the diet. Nutritional intake where HF was used was compared to those without HF, with or without a vitamin and mineral supplement (VMS).
Results:
One-hundred-and-five food diaries were included in the data analysis: 70 boys (66.7%) with median age of 21.8 months [IQR: 10 - 67.7]. Fifty-three children (50.5%) consumed a HF and the volume of consumption was correlated to micronutrient intake. Significantly (p <0.05) more children reached their micronutrient requirements if a HF was consumed. In those without a HF, some continued not to achieve requirements in particular for vitamin D and zinc, in spite of VMS.
Conclusion:
This study points towards the important micronutrient contribution of a HF in children with FPIGA. Children, who are not on a HF and without a VMS, are at increased risk of low intakes in particular vitamin D and zinc. Further studies need to be performed, to assess whether dietary intake translates into actual biological deficiencies
Modeling recursive RNA interference.
An important application of the RNA interference (RNAi) pathway is its use as a small RNA-based regulatory system commonly exploited to suppress expression of target genes to test their function in vivo. In several published experiments, RNAi has been used to inactivate components of the RNAi pathway itself, a procedure termed recursive RNAi in this report. The theoretical basis of recursive RNAi is unclear since the procedure could potentially be self-defeating, and in practice the effectiveness of recursive RNAi in published experiments is highly variable. A mathematical model for recursive RNAi was developed and used to investigate the range of conditions under which the procedure should be effective. The model predicts that the effectiveness of recursive RNAi is strongly dependent on the efficacy of RNAi at knocking down target gene expression. This efficacy is known to vary highly between different cell types, and comparison of the model predictions to published experimental data suggests that variation in RNAi efficacy may be the main cause of discrepancies between published recursive RNAi experiments in different organisms. The model suggests potential ways to optimize the effectiveness of recursive RNAi both for screening of RNAi components as well as for improved temporal control of gene expression in switch off-switch on experiments
Searching for Exoplanets Using a Microresonator Astrocomb
Detection of weak radial velocity shifts of host stars induced by orbiting
planets is an important technique for discovering and characterizing planets
beyond our solar system. Optical frequency combs enable calibration of stellar
radial velocity shifts at levels required for detection of Earth analogs. A new
chip-based device, the Kerr soliton microcomb, has properties ideal for
ubiquitous application outside the lab and even in future space-borne
instruments. Moreover, microcomb spectra are ideally suited for astronomical
spectrograph calibration and eliminate filtering steps required by conventional
mode-locked-laser frequency combs. Here, for the calibration of astronomical
spectrographs, we demonstrate an atomic/molecular line-referenced,
near-infrared soliton microcomb. Efforts to search for the known exoplanet HD
187123b were conducted at the Keck-II telescope as a first in-the-field
demonstration of microcombs
- …
