18 research outputs found

    Identification of Clinically Relevant Protein Targets in Prostate Cancer with 2D-DIGE Coupled Mass Spectrometry and Systems Biology Network Platform

    Get PDF
    Prostate cancer (PCa) is the most common type of cancer found in men and among the leading causes of cancer death in the western world. In the present study, we compared the individual protein expression patterns from histologically characterized PCa and the surrounding benign tissue obtained by manual micro dissection using highly sensitive two-dimensional differential gel electrophoresis (2D-DIGE) coupled with mass spectrometry. Proteomic data revealed 118 protein spots to be differentially expressed in cancer (n = 24) compared to benign (n = 21) prostate tissue. These spots were analysed by MALDI-TOF-MS/MS and 79 different proteins were identified. Using principal component analysis we could clearly separate tumor and normal tissue and two distinct tumor groups based on the protein expression pattern. By using a systems biology approach, we could map many of these proteins both into major pathways involved in PCa progression as well as into a group of potential diagnostic and/or prognostic markers. Due to complexity of the highly interconnected shortest pathway network, the functional sub networks revealed some of the potential candidate biomarker proteins for further validation. By using a systems biology approach, our study revealed novel proteins and molecular networks with altered expression in PCa. Further functional validation of individual proteins is ongoing and might provide new insights in PCa progression potentially leading to the design of novel diagnostic and therapeutic strategies

    Effectiveness of Neural Networks for Research on Novel Thermoelectric Materials. A Proof of Concept.

    No full text
    This paper describes the application of neural network approaches to the discovery of new materials exhibiting thermoelectric properties. Thermoelectricity is the ability of a material to convert energy from heat to electricity. At present, only few materials are known to have this property to a degree which is interesting for use in industrial applications like, for example, large-scale energy harvesting [3, 8]. We employ a standard neural network architecture with supervised learning on a training dataset representing materials and later predict the properties on a disjoint test set. At this proof of concept stage, both sets are synthetically generated with plausible values of the features. A substantial increase in performance is seen when utilising available physical knowledge in the machine learning model. The results show that this approach is feasible and ready for future tests with experimental laboratory data
    corecore