64 research outputs found
Simulated effect of pneumococcal vaccination in the Netherlands on existing rules constructed in a non-vaccinated cohort predicting sequelae after bacterial meningitis
BACKGROUND: Previously two prediction rules identifying children at risk of hearing loss and academic or behavioral limitations after bacterial meningitis were developed. Streptococcus pneumoniae as causative pathogen was an important risk factor in both. Since 2006 Dutch children receive seven-valent conjugate vaccination against S. pneumoniae. The presumed effect of vaccination was simulated by excluding all children infected by S. pneumoniae with the serotypes included in the vaccine, from both previous collected cohorts (between 1990-1995). METHODS: Children infected by one of the vaccine serotypes were excluded from both original cohorts (hearing loss: 70 of 628 children; academic or behavioral limitations: 26 of 182 children). All identified risk factors were included in multivariate logistic regression models. The discriminative ability of both new models was calculated. RESULTS: The same risk factors as in the original models were significant. The discriminative ability of the original hearing loss model was 0.84 and of the new model 0.87. In the academic or behavioral limitations model it was 0.83 and 0.84 respectively. CONCLUSION: It can be assumed that the prediction rules will also be applicable on a vaccinated population. However, vaccination does not provide 100% coverage and evidence is available that serotype replacement will occur. The impact of vaccination on serotype replacement needs to be investigated, and the prediction rules must be validated externally
Genome-wide association mapping identifies a new arsenate reductase enzyme critical for limiting arsenic accumulation in plants
Inorganic arsenic is a carcinogen, and its ingestion through foods such as rice presents a significant risk to human health. Plants chemically reduce arsenate to arsenite. Using genome-wide association (GWA) mapping of loci controlling natural variation in arsenic accumulation in Arabidopsis thaliana allowed us to identify the arsenate reductase required for this reduction, which we named High Arsenic Content 1 (HAC1). Complementation verified the identity of HAC1, and expression in Escherichia coli lacking a functional arsenate reductase confirmed the arsenate reductase activity of HAC1. The HAC1 protein accumulates in the epidermis, the outer cell layer of the root, and also in the pericycle cells surrounding the central vascular tissue. Plants lacking HAC1 lose their ability to efflux arsenite from roots, leading to both increased transport of arsenic into the central vascular tissue and on into the shoot. HAC1 therefore functions to reduce arsenate to arsenite in the outer cell layer of the root, facilitating efflux of arsenic as arsenite back into the soil to limit both its accumulation in the root and transport to the shoot. Arsenate reduction by HAC1 in the pericycle may play a role in limiting arsenic loading into the xylem. Loss of HAC1-encoded arsenic reduction leads to a significant increase in arsenic accumulation in shoots, causing an increased sensitivity to arsenate toxicity. We also confirmed the previous observation that the ACR2 arsenate reductase in A. thaliana plays no detectable role in arsenic metabolism. Furthermore, ACR2 does not interact epistatically with HAC1, since arsenic metabolism in the acr2 hac1 double mutant is disrupted in an identical manner to that described for the hac1 single mutant. Our identification of HAC1 and its associated natural variation provides an important new resource for the development of low arsenic-containing food such as rice
Peripheral Arterial and Venous Response to Tilt Test after a 60-Day Bedrest with and without Countermeasures (ES-IBREP)
We quantified the impact of 60-day head-down bed rest (HDBR) with countermeasures on arterial and venous response to tilt. Methods: Twenty-one males: 7 control (Con), 7 resistive vibration exercise (RVE) and 7 Chinese herb (Herb) were assessed. Subjects were identified as finisher (F) or non-finishers (NF) at the post-HDBR 20-min tilt test. The cerebral (MCA), femoral (FEM) arterial flow velocity and leg vascular resistance (FRI), the portal vein section (PV), the flow redistribution ratios (MCA/FEM; MCA/PV), the tibial (Tib), gastrocnemius (Gast), and saphenous (Saph) vein sections were measured by echography and Doppler ultrasonography. Arterial and venous parameters were measured at 3-min pre-tilt in the supine position, and at 1 min before the end of the tilt. Results: At post-HDBR tilt, MCA decreased more compared with pre-HDBR tilt in the Con, RVE, and Herb groups, the MCA/FEM tended to decrease in the Con and Herb groups (not significant) but remained stable in the RVE gr. FRI dropped in the Con gr, but remained stable in the Herb gr and increased in the RVE gr. PV decreased less in the Con and Herb groups but remained unchanged in the RVE gr. MCA/PV decreased in the Con and Herb groups, but increased to a similar extent in the RVE gr. Gast section significantly increased more in the Con gr only, whereas Tib section increased more in the Con and Herb groups but not in the RVE gr. The percent change in Saph section was similar at pre- and post-HDBR tilt. Conclusion: In the Con gr, vasoconstriction was reduced in leg and splanchnic areas. RVE and Herb contributed to prevent the loss of vasoconstriction in both areas, but the effect of RVE was higher. RVE and Herb contributed to limit Gast distension whereas only RVE had a protective effect on the Tib
Impact of inactivity and exercise on the vasculature in humans
The effects of inactivity and exercise training on established and novel cardiovascular risk factors are relatively modest and do not account for the impact of inactivity and exercise on vascular risk. We examine evidence that inactivity and exercise have direct effects on both vasculature function and structure in humans. Physical deconditioning is associated with enhanced vasoconstrictor tone and has profound and rapid effects on arterial remodelling in both large and smaller arteries. Evidence for an effect of deconditioning on vasodilator function is less consistent. Studies of the impact of exercise training suggest that both functional and structural remodelling adaptations occur and that the magnitude and time-course of these changes depends upon training duration and intensity and the vessel beds involved. Inactivity and exercise have direct “vascular deconditioning and conditioning” effects which likely modify cardiovascular risk
Choosing and Using a Plant DNA Barcode
The main aim of DNA barcoding is to establish a shared community resource of DNA sequences that can be used for organismal identification and taxonomic clarification. This approach was successfully pioneered in animals using a portion of the cytochrome oxidase 1 (CO1) mitochondrial gene. In plants, establishing a standardized DNA barcoding system has been more challenging. In this paper, we review the process of selecting and refining a plant barcode; evaluate the factors which influence the discriminatory power of the approach; describe some early applications of plant barcoding and summarise major emerging projects; and outline tool development that will be necessary for plant DNA barcoding to advance
Quantitative research into the deconditioning of hemodynamic to disorder of consciousness carried out using transcranial Doppler ultrasonography and photoplethysmography obtained via finger-transmissive absorption
Short-term unilateral leg immobilization alters peripheral but not central arterial structure and function in healthy young humans
This paper is closed access.Short-term leg immobilization is an acute model of inactivity, which induces vascular
deconditioning. The present study was conducted to determine if short-term unilateral leg
immobilization induced alterations in central and peripheral conduit artery structure
(diameter and compliance),function (resting blood flow and mean wall shear rate) and
peripheral flow mediated dilation. Healthy participants (n=7 women and n=8 men) were
studied before and after 12 days of unilateral leg immobilization. Carotid artery structure
and function were unaltered with immobilization indicating that the unilateral
immobilization did not have a detectable effect on this representative central artery. In
contrast, peripheral measures of arterial structure at the common femoral and popliteal
arteries showed significant changes in both the immobilized and non-immobilized limbs
and the changes were greater in magnitude in the immobilized limb. Specifically,
femoral and popliteal artery compliance and femoral artery diameter were reduced in
both the immobilized and the non-immobilized limb (p<0.05) while popliteal artery
diameter was reduced only in the immobilized leg. Popliteal artery flow mediated
dilation, an indicator of peripheral artery function, was increased in the immobilized
limb, which parallels reports in paralyzed limbs of spinal cord injured individuals. The
time course of vascular alterations with inactivity likely follows a sequence of
adaptations in arterial structure and function reflecting differing initial flow patterns, and
arterial wall composition, and diverse hemodynamic stimuli within different blood
vessels
Functional and structural vascular adaptations following 8 weeks of low volume high intensity interval training in lower leg of type 2 diabetes patients and individuals at high risk of metabolic syndrome
- …
